Triple-networked hybrid hydrogels reinforced with montmorillonite clay and graphene nanoplatelets for soft and hard tissue regeneration

A Kumar, SY Won, A Sood, SY Choi… - International Journal of …, 2022 - mdpi.com
International Journal of Molecular Sciences, 2022mdpi.com
Hydrogel is a three-dimensional (3D) soft and highly hydrophilic, polymeric network that can
swell in water and imbibe a high amount of water or biological fluids. Hydrogels have been
used widely in various biomedical applications. Hydrogel may provide a fluidic tissue-like
3D microenvironment by maintaining the original network for tissue engineering. However,
their low mechanical performances limit their broad applicability in various functional
tissues. This property causes substantial challenges in designing and preparing strong …
Hydrogel is a three-dimensional (3D) soft and highly hydrophilic, polymeric network that can swell in water and imbibe a high amount of water or biological fluids. Hydrogels have been used widely in various biomedical applications. Hydrogel may provide a fluidic tissue-like 3D microenvironment by maintaining the original network for tissue engineering. However, their low mechanical performances limit their broad applicability in various functional tissues. This property causes substantial challenges in designing and preparing strong hydrogel networks. Therefore, we report the triple-networked hybrid hydrogel network with enhanced mechanical properties by incorporating dual-crosslinking and nanofillers (e.g., montmorillonite (MMT), graphene nanoplatelets (GNPs)). In this study, we prepared hybrid hydrogels composed of polyacrylamide, poly (vinyl alcohol), sodium alginate, MMT, and MMT/GNPs through dynamic crosslinking. The freeze-dried hybrid hydrogels showed good 3D porous architecture. The results exhibited a magnificent porous structure, interconnected pore-network surface morphology, enhanced mechanical properties, and cellular activity of hybrid hydrogels.
MDPI
以上显示的是最相近的搜索结果。 查看全部搜索结果