Anti-Staphylococcal and cytotoxic activities of the short anti-microbial peptide PVP

H Memariani, M Memariani, RM Robati, S Nasiri… - World Journal of …, 2020 - Springer
World Journal of Microbiology and Biotechnology, 2020Springer
Over the past years, short anti-microbial peptides have drawn growing attention in the
research and trade literature because they are usually capable of killing a broad spectrum of
pathogens by employing unique mechanisms of action. This study aimed to evaluate the anti-
bacterial effects of a previously designed peptide named PVP towards the clinical strains of
methicillin-resistant Staphylococcus aureus (MRSA) in vitro. Secondary structure,
cytotoxicity, and membrane-permeabilizing effects of the peptide were also assessed. PVP …
Abstract
Over the past years, short anti-microbial peptides have drawn growing attention in the research and trade literature because they are usually capable of killing a broad spectrum of pathogens by employing unique mechanisms of action. This study aimed to evaluate the anti-bacterial effects of a previously designed peptide named PVP towards the clinical strains of methicillin-resistant Staphylococcus aureus (MRSA) in vitro. Secondary structure, cytotoxicity, and membrane-permeabilizing effects of the peptide were also assessed. PVP had a tendency to adopt alpha-helical conformation based upon structural predictions and circular dichroism spectroscopy (in 50% trifluoroethanol). The peptide showed MIC values ranging from 1 to 16 µg/mL against 10 strains of MRSA. In contrast to ciprofloxacin and gentamicin, PVP at sub-lethal concentration (1 µg/mL) did not provoke the development of peptide resistance after 14 serial passages. Remarkably, 1 h of exposure to 4 × MBC of PVP (8 µg/mL) was sufficient for total bacterial clearance, whereas 4 × MBC of vancomycin (8 µg/mL) failed to totally eradicate bacterial cells, even after 8 h. PVP showed negligible cytotoxicity against human dermal fibroblasts at concentrations required to kill the MRSA strains. The results of flow cytometric analysis and fluorescence microscopy revealed that PVP caused bacterial membrane permeabilization, eventually culminating in cell death. Owing to the potent anti-bacterial activity, fast bactericidal kinetics, and negligible cytotoxicity, PVP has the potential to be used as a candidate antibiotic for the topical treatment of MRSA infections.
Springer
以上显示的是最相近的搜索结果。 查看全部搜索结果