Oxidative signature of cerebrospinal fluid from mild cognitive impairment and Alzheimer disease patients

F Di Domenico, G Pupo, E Giraldo, MC Badìa… - Free Radical Biology …, 2016 - Elsevier
F Di Domenico, G Pupo, E Giraldo, MC Badìa, P Monllor, A Lloret, ME Schininà, A Giorgi…
Free Radical Biology and Medicine, 2016Elsevier
Background Several studies suggest that pathological changes in Alzheimer's disease (AD)
brain begin around 10–20 years before the onset of cognitive impairment. Biomarkers that
can support early diagnosis and predict development of dementia would, therefore, be
crucial for patient care and evaluation of drug efficacy. Although cerebrospinal fluid (CSF)
levels of Aβ42, tau, and p-tau are well-established diagnostic biomarkers of AD, there is an
urgent need to identify additional molecular alterations of neuronal function that can be …
Background
Several studies suggest that pathological changes in Alzheimer’s disease (AD) brain begin around 10–20 years before the onset of cognitive impairment. Biomarkers that can support early diagnosis and predict development of dementia would, therefore, be crucial for patient care and evaluation of drug efficacy. Although cerebrospinal fluid (CSF) levels of Aβ42, tau, and p-tau are well-established diagnostic biomarkers of AD, there is an urgent need to identify additional molecular alterations of neuronal function that can be evaluated at the systemic level.
Objectives
This study was focused on the analysis of oxidative stress-related modifications of the CSF proteome, from subjects with AD and amnestic mild cognitive impairment (aMCI).
Methods
A targeted proteomics approach has been employed to discover novel CSF biomarkers that can augment the diagnostic and prognostic accuracy of current leading CSF biomarkers. CSF samples from aMCI, AD and control individuals (CTR) were collected and analyzed using a combined redox proteomics approach to identify the specific oxidatively modified proteins in AD and aMCI compared with controls.
Results
The majority of carbonylated proteins identified by redox proteomics are found early in the progression of AD, i.e., oxidatively modified CSF proteins were already present in aMCI compared with controls and remain oxidized in AD, thus suggesting that dysfunction of selected proteins initiate many years before severe dementia is diagnosed.
Conclusions
The above findings highlight the presence of early oxidative damage in aMCI before clinical dementia of AD is manifested. The identification of early markers of AD that may be detected peripherally may open new prospective for biomarker studies.
Elsevier
以上显示的是最相近的搜索结果。 查看全部搜索结果