TDP-43-stratified single-cell proteomics of postmortem human spinal motor neurons reveals protein dynamics in amyotrophic lateral sclerosis

AJ Guise, SA Misal, R Carson, JH Chu, H Boekweg… - Cell reports, 2024 - cell.com
AJ Guise, SA Misal, R Carson, JH Chu, H Boekweg, D Van Der Watt, NC Welsh, T Truong
Cell reports, 2024cell.com
A limitation of conventional bulk-tissue proteome studies in amyotrophic lateral sclerosis
(ALS) is the confounding of motor neuron (MN) signals by admixed non-MN proteins. Here,
we leverage laser capture microdissection and nanoPOTS single-cell mass spectrometry-
based proteomics to query changes in protein expression in single MNs from postmortem
ALS and control tissues. In a follow-up analysis, we examine the impact of stratification of
MNs based on cytoplasmic transactive response DNA-binding protein 43 (TDP-43)+ …
Summary
A limitation of conventional bulk-tissue proteome studies in amyotrophic lateral sclerosis (ALS) is the confounding of motor neuron (MN) signals by admixed non-MN proteins. Here, we leverage laser capture microdissection and nanoPOTS single-cell mass spectrometry-based proteomics to query changes in protein expression in single MNs from postmortem ALS and control tissues. In a follow-up analysis, we examine the impact of stratification of MNs based on cytoplasmic transactive response DNA-binding protein 43 (TDP-43)+ inclusion pathology on the profiles of 2,238 proteins. We report extensive overlap in differentially abundant proteins identified in ALS MNs with or without overt TDP-43 pathology, suggesting early and sustained dysregulation of cellular respiration, mRNA splicing, translation, and vesicular transport in ALS. Together, these data provide insights into proteome-level changes associated with TDP-43 proteinopathy and begin to demonstrate the utility of pathology-stratified trace sample proteomics for understanding single-cell protein dynamics in human neurologic diseases.
cell.com
以上显示的是最相近的搜索结果。 查看全部搜索结果