-Gorenstein Modules over Formal Triangular Matrix Rings
D Wu, C Yi - Bulletin of the Malaysian Mathematical Sciences …, 2021 - Springer
Let A and B be rings and U a (B, A)-bimodule. Under some conditions, Ω Ω-Gorenstein
module over the formal triangular matrix ring T=\left (A\,\quad 0\U\quad B\) T= A 0 UB is …
module over the formal triangular matrix ring T=\left (A\,\quad 0\U\quad B\) T= A 0 UB is …
Generalized Gorenstein Projective Modules Over Triangular Matrix Rings
G Hanqing, Y Gang - Journal of Southwest University Natural …, 2021 - xbgjxt.swu.edu.cn
Abstract Let $\mathit {\Lambda}=\left ({array}{cc} A & M\\0 & B {array}\right) $ be a triangular
matrix ring, where A and B are rings, and M is a AB bimodule. In this paper, the class Φ …
matrix ring, where A and B are rings, and M is a AB bimodule. In this paper, the class Φ …
Gorenstein FP-injective modules and dimensions over formal triangular matrix rings
WU De-jun, Z Hui - Journal of Lanzhou University of Technology, 2022 - journal.lut.edu.cn
Let T be a formal triangular matrix ring, where A and B are rings and U is a (B, A)-bimodule.
A characterization of Gorenstein FP-injective left T-modules over the formal triangular matrix …
A characterization of Gorenstein FP-injective left T-modules over the formal triangular matrix …
Gorenstein flat-cotorsion modules over formal triangular matrix rings
D Wu - Bulletin of the Korean Mathematical Society, 2021 - koreascience.kr
Let A and B be rings and U be a (B, A)-bimodule. If BU has finite flat dimension, UA has finite
flat dimension and U⊗ AC is a cotorsion left B-module for any cotorsion left A-module C …
flat dimension and U⊗ AC is a cotorsion left B-module for any cotorsion left A-module C …
Gorenstein complexes over formal triangular matrix rings
F Kong, D Wu - Georgian Mathematical Journal, 2024 - degruyter.com
Let 𝐴 and 𝐵 be rings and 𝑈 a (B, A)-bimodule. The Gorenstein projective, injective and flat
complexes over the formal triangular matrix ring T=(A 0 UB) are explicitly described. These …
complexes over the formal triangular matrix ring T=(A 0 UB) are explicitly described. These …
Gorenstein AC-Projective and AC-Injective Modules over Formal Triangular Matrix Rings
D Wu, H Zhou - Algebra Colloquium, 2022 - World Scientific
Let A and B be rings and U a (B, A)-bimodule. If BU is flat and UA is finitely generated
projective (resp., BU is finitely generated projective and UA is flat), then the characterizations …
projective (resp., BU is finitely generated projective and UA is flat), then the characterizations …
Gorenstein homological dimensions of modules over triangular matrix rings
R Zhu, Z Liu, Z Wang - Turkish Journal of Mathematics, 2016 - journals.tubitak.gov.tr
Abstract Let $ A $ and $ B $ be rings, $ U $ a $(B, A) $-bimodule, and $ T=\left (\begin
{smallmatrix} A & 0\\U & B\\\end {smallmatrix}\right) $ the triangular matrix ring. In this paper …
{smallmatrix} A & 0\\U & B\\\end {smallmatrix}\right) $ the triangular matrix ring. In this paper …
[HTML][HTML] Gorenstein flat modules and dimensions over formal triangular matrix rings
L Mao - Journal of Pure and Applied Algebra, 2020 - Elsevier
Abstract Let T=(A 0 UB) be a formal triangular matrix ring, where A and B are rings and U is
a (B, A)-bimodule. We prove that, if T is a right coherent ring, UB has finite flat dimension, UA …
a (B, A)-bimodule. We prove that, if T is a right coherent ring, UB has finite flat dimension, UA …
[PDF][PDF] Gorenstein projective modules and dimensions over triangular matrix ring of order 3
R YANG, M WANG, Z WANG - Journal of Yunnan University …, 2022 - yndxxb.ynu.edu.cn
3 阶三角矩阵环上的 Gorenstein 投射模及其维数 Page 1 3 阶三角矩阵环上的 Gorenstein 投射模
及其维数 杨 瑞,王 淼,王占平** (西北师范大学 数学与统计学院,甘肃 兰州 730070) T = Ñ A1 0 0 …
及其维数 杨 瑞,王 淼,王占平** (西北师范大学 数学与统计学院,甘肃 兰州 730070) T = Ñ A1 0 0 …
Admissible balanced pairs over formal triangular matrix rings
L Mao - Bulletin of the Korean Mathematical Society, 2021 - koreascience.kr
Abstract Suppose that $ T=\(\array {A&0\\U&B}\) $ is a formal triangular matrix ring, where A
and B are rings and U is a (B, A)-bimodule. Let ℭ 1 and ℭ 2 be two classes of left A-modules …
and B are rings and U is a (B, A)-bimodule. Let ℭ 1 and ℭ 2 be two classes of left A-modules …