Almost non-negative scalar curvature on Riemannian manifolds conformal to tori

B Allen - The Journal of Geometric Analysis, 2021 - Springer
In this article we reduce the geometric stability conjecture for the scalar torus rigidity theorem
to the conformal case via the Yamabe problem. Then we are able to prove the case where a …

[PDF][PDF] ALMOST NON-NEGATIVE SCALAR CURVATURE ON RIEMANNIAN MANIFOLDS CONFORMAL TO TORI

B ALLEN - 2021 - researchgate.net
In this article we reduce the geometric stability conjecture for the scalar torus rigidity theorem
to the conformal case via the Yamabe problem. Then we are able to prove the case where a …

Almost non-negative scalar curvature on Riemannian manifolds conformal to tori

B Allen - arXiv preprint arXiv:2010.06008, 2020 - arxiv.org
In this article we reduce the geometric stability conjecture for the scalar torus rigidity theorem
to the conformal case via the Yamabe problem. Then we are able to prove the case where a …

Almost Non-negative Scalar Curvature on Riemannian Manifolds Conformal to Tori.

B Allen - Journal of Geometric Analysis, 2021 - search.ebscohost.com
In this article we reduce the geometric stability conjecture for the scalar torus rigidity theorem
to the conformal case via the Yamabe problem. Then we are able to prove the case where a …

Almost non-negative scalar curvature on Riemannian manifolds conformal to tori

B Allen - arXiv e-prints, 2020 - ui.adsabs.harvard.edu
In this article we reduce the geometric stability conjecture for the scalar torus rigidity theorem
to the conformal case via the Yamabe problem. Then we are able to prove the case where a …

[PDF][PDF] ALMOST NON-NEGATIVE SCALAR CURVATURE ON RIEMANNIAN MANIFOLDS CONFORMAL TO TORI

B ALLEN - 2020 - researchgate.net
In this article we reduce the geometric stability conjecture for the scalar torus rigidity theorem
to the conformal case via the Yamabe problem. Then we are able to prove the case where a …