Bounded independence fools degree-2 threshold functions

I Diakonikolas, DM Kane, J Nelson - arXiv preprint arXiv:0911.3389, 2009 - arxiv.org
Let x be a random vector coming from any k-wise independent distribution over {-1, 1}^ n.
For an n-variate degree-2 polynomial p, we prove that E [sgn (p (x))] is determined up to an …

[PDF][PDF] Bounded Independence Fools Degree-2 Threshold Functions

I Diakonikolas, DM Kane, J Nelson - arXiv preprint arXiv:0911.3389, 2009 - Citeseer
Let x be a random vector coming from any k-wise independent distribution over {− 1, 1} n.
For an n-variate degree-2 polynomial p, we prove that E [sgn (p (x))] is determined up to an …

Bounded Independence Fools Degree-2 Threshold Functions

I Diakonikolas, DM Kane, J Nelson - arXiv e-prints, 2009 - ui.adsabs.harvard.edu
Let x be a random vector coming from any k-wise independent distribution over {-1, 1}^ n.
For an n-variate degree-2 polynomial p, we prove that E [sgn (p (x))] is determined up to an …

[PDF][PDF] Bounded Independence Fools Degree-2 Threshold Functions

I Diakonikolas, DM Kane, J Nelson - arXiv preprint arXiv:0911.3389, 2009 - academia.edu
Let x be a random vector coming from any k-wise independent distribution over {− 1, 1} n.
For an n-variate degree-2 polynomial p, we prove that E [sgn (p (x))] is determined up to an …

Bounded Independence Fools Degree-2 Threshold Functions

I Diakonikolas, DM Kane, J Nelson - Electronic Colloquium on …, 2009 - research.ed.ac.uk
Let x be a random vector coming from any k-wise independent distribution over {-1, 1}^ n.
For an n-variate degree-2 polynomial p, we prove that E [sgn (p (x))] is determined up to an …

Bounded Independence Fools Degree-2 Threshold Functions

I Diakonikolas, DM Kane, J Nelson - Computing Research …, 2009 - research.ed.ac.uk
Let x be a random vector coming from any k-wise independent distribution over {-1, 1}^ n.
For an n-variate degree-2 polynomial p, we prove that E [sgn (p (x))] is determined up to an …