A light weight compliant hand mechanism with high degrees of freedom

J Potratz, J Yang, K Abdel-Malek, EP Pitarch… - 2005 - asmedigitalcollection.asme.org
2005asmedigitalcollection.asme.org
This paper presents the design and prototyping of an inherently compliant lightweight hand
mechanism. The hand mechanism itself has 15 degrees of freedom and five fingers.
Although the degrees of freedom in each finger are coupled, reducing the number of
independent degrees of freedom to 5, the 15 degrees of freedom of the hand could
potentially be individually actuated. Each joint consists of a novel flexing mechanism that is
based on the loading of a compression spring in the axial and transverse direction via a …
This paper presents the design and prototyping of an inherently compliant lightweight hand mechanism. The hand mechanism itself has 15 degrees of freedom and five fingers. Although the degrees of freedom in each finger are coupled, reducing the number of independent degrees of freedom to 5, the 15 degrees of freedom of the hand could potentially be individually actuated. Each joint consists of a novel flexing mechanism that is based on the loading of a compression spring in the axial and transverse direction via a cable and conduit system. Currently, a bench top version of the prototype is being developed; the three joints of each finger are coupled together to simplify the control system. The current control scheme under investigation simulates a control scheme where myoelectric signals in the wrist flexor and extensor muscles are converted in to and coordinates on a control scheme chart. Static load-deformation analysis of finger segments is studied based on a 3-dimensional model without taking the stiffener into account, and the experiment validates the simulation.
The American Society of Mechanical Engineers
以上显示的是最相近的搜索结果。 查看全部搜索结果