Analytic theory of edge modes in topological insulators

S Mao, Y Kuramoto, KI Imura… - Journal of the Physical …, 2010 - journals.jps.jp
Journal of the Physical Society of Japan, 2010journals.jps.jp
Spectrum and wave function of gapless edge modes are derived analytically for a tight-
binding model of topological insulators on square lattice. Particular attention is paid to
dependence on edge geometries such as the straight (1, 0) and zigzag (1, 1) edges in the
thermodynamic limit. The key technique is to identify operators that combine to annihilate the
edge state in the effective one-dimensional (1D) model with momentum along the edge. In
the (1, 0) edge, the edge mode is present either around the center of 1D Brillouin zone or its …
Spectrum and wave function of gapless edge modes are derived analytically for a tight-binding model of topological insulators on square lattice. Particular attention is paid to dependence on edge geometries such as the straight (1,0) and zigzag (1,1) edges in the thermodynamic limit. The key technique is to identify operators that combine to annihilate the edge state in the effective one-dimensional (1D) model with momentum along the edge. In the (1,0) edge, the edge mode is present either around the center of 1D Brillouin zone or its boundary, depending on location of the bulk excitation gap. In the (1,1) edge, the edge mode is always present both at the center and near the boundary. Depending on system parameters, however, the mode is absent in the middle of the Brillouin zone. In this case the binding energy of the edge mode near the boundary is extremely small; about 10 -3 of the overall energy scale. Origin of this minute energy scale is discussed.
journals.jps.jp
以上显示的是最相近的搜索结果。 查看全部搜索结果