Applications of machine learning models to predict and prevent obesity: A mini-review

X Zhou, L Chen, HX Liu - Frontiers in Nutrition, 2022 - frontiersin.org
X Zhou, L Chen, HX Liu
Frontiers in Nutrition, 2022frontiersin.org
Research on obesity and related diseases has received attention from government
policymakers; interventions targeting nutrient intake, dietary patterns, and physical activity
are deployed globally. An urgent issue now is how can we improve the efficiency of obesity
research or obesity interventions. Currently, machine learning (ML) methods have been
widely applied in obesity-related studies to detect obesity disease biomarkers or discover
intervention strategies to optimize weight loss results. In addition, an open source of these …
Research on obesity and related diseases has received attention from government policymakers; interventions targeting nutrient intake, dietary patterns, and physical activity are deployed globally. An urgent issue now is how can we improve the efficiency of obesity research or obesity interventions. Currently, machine learning (ML) methods have been widely applied in obesity-related studies to detect obesity disease biomarkers or discover intervention strategies to optimize weight loss results. In addition, an open source of these algorithms is necessary to check the reproducibility of the research results. Furthermore, appropriate applications of these algorithms could greatly improve the efficiency of similar studies by other researchers. Here, we proposed a mini-review of several open-source ML algorithms, platforms, or related databases that are of particular interest or can be applied in the field of obesity research. We focus our topic on nutrition, environment and social factor, genetics or genomics, and microbiome-adopting ML algorithms.
Frontiers
以上显示的是最相近的搜索结果。 查看全部搜索结果