Comparing and contrasting size-based particle segregation models: Applying coarse-graining to perfectly bidisperse systems
Computational particle mechanics, 2017•Springer
Over the last 12 years, numerous new theoretical continuum models have been formulated
to predict particle segregation in the size-based bidisperse granular flows over inclined
channels. Despite their presence, to our knowledge, no attempts have been made to
compare and contrast the fundamental basis upon which these continuum models have
been formulated. In this paper, firstly, we aim to illustrate the difference in these models
including the incompatible nomenclature which impedes direct comparison. Secondly, we …
to predict particle segregation in the size-based bidisperse granular flows over inclined
channels. Despite their presence, to our knowledge, no attempts have been made to
compare and contrast the fundamental basis upon which these continuum models have
been formulated. In this paper, firstly, we aim to illustrate the difference in these models
including the incompatible nomenclature which impedes direct comparison. Secondly, we …
Abstract
Over the last 12 years, numerous new theoretical continuum models have been formulated to predict particle segregation in the size-based bidisperse granular flows over inclined channels. Despite their presence, to our knowledge, no attempts have been made to compare and contrast the fundamental basis upon which these continuum models have been formulated. In this paper, firstly, we aim to illustrate the difference in these models including the incompatible nomenclature which impedes direct comparison. Secondly, we utilise (i) our robust and efficient in-house particle solver MercuryDPM, and (ii) our accurate micro–macro (discrete to continuum) mapping tool called coarse-graining, to compare several proposed models. Through our investigation involving size-bidisperse mixtures, we find that (i) the proposed total partial stress fraction expressions do not match the results obtained from our simulation, and (ii) the kinetic partial stress fraction dominates over the total partial stress fraction and the contact partial stress fraction. However, the proposed theoretical total stress fraction expressions do capture the kinetic partial stress fraction profile, obtained from simulations, very well, thus possibly highlighting the reason why mixture theory segregation models work for inclined channel flows. However, further investigation is required to strengthen the basis upon which the existing mixture theory segregation models are built upon.
Springer
以上显示的是最相近的搜索结果。 查看全部搜索结果