Computing Reeb graphs as a union of contour trees

H Doraiswamy, V Natarajan - IEEE transactions on visualization …, 2012 - ieeexplore.ieee.org
IEEE transactions on visualization and computer graphics, 2012ieeexplore.ieee.org
The Reeb graph of a scalar function tracks the evolution of the topology of its level sets. This
paper describes a fast algorithm to compute the Reeb graph of a piecewise-linear (PL)
function defined over manifolds and non-manifolds. The key idea in the proposed approach
is to maximally leverage the efficient contour tree algorithm to compute the Reeb graph. The
algorithm proceeds by dividing the input into a set of subvolumes that have loop-free Reeb
graphs using the join tree of the scalar function and computes the Reeb graph by combining …
The Reeb graph of a scalar function tracks the evolution of the topology of its level sets. This paper describes a fast algorithm to compute the Reeb graph of a piecewise-linear (PL) function defined over manifolds and non-manifolds. The key idea in the proposed approach is to maximally leverage the efficient contour tree algorithm to compute the Reeb graph. The algorithm proceeds by dividing the input into a set of subvolumes that have loop-free Reeb graphs using the join tree of the scalar function and computes the Reeb graph by combining the contour trees of all the subvolumes. Since the key ingredient of this method is a series of union-find operations, the algorithm is fast in practice. Experimental results demonstrate that it outperforms current generic algorithms by a factor of up to two orders of magnitude, and has a performance on par with algorithms that are catered to restricted classes of input. The algorithm also extends to handle large data that do not fit in memory.
ieeexplore.ieee.org
以上显示的是最相近的搜索结果。 查看全部搜索结果

Google学术搜索按钮

example.edu/paper.pdf
搜索
获取 PDF 文件
引用
References