Connectomic neuromodulation for Alzheimer's disease: A systematic review and meta-analysis of invasive and non-invasive techniques

C Cheyuo, J Germann, K Yamamoto, A Vetkas… - Translational …, 2022 - nature.com
Translational Psychiatry, 2022nature.com
Deep brain stimulation (DBS) and non-invasive neuromodulation are currently being
investigated for treating network dysfunction in Alzheimer's Disease (AD). However, due to
heterogeneity in techniques and targets, the cognitive outcome and brain network
connectivity remain unknown. We performed a systematic review, meta-analysis, and
normative functional connectivity to determine the cognitive outcome and brain networks of
DBS and non-invasive neuromodulation in AD. PubMed, Embase, and Web of Science were …
Abstract
Deep brain stimulation (DBS) and non-invasive neuromodulation are currently being investigated for treating network dysfunction in Alzheimer’s Disease (AD). However, due to heterogeneity in techniques and targets, the cognitive outcome and brain network connectivity remain unknown. We performed a systematic review, meta-analysis, and normative functional connectivity to determine the cognitive outcome and brain networks of DBS and non-invasive neuromodulation in AD. PubMed, Embase, and Web of Science were searched using three concepts: dementia, brain connectome, and brain stimulation, with filters for English, human studies, and publication dates 1980–2021. Additional records from clinicaltrials.gov were added. Inclusion criteria were AD study with DBS or non-invasive neuromodulation and a cognitive outcome. Exclusion criteria were less than 3-months follow-up, severe dementia, and focused ultrasound intervention. Bias was assessed using Centre for Evidence-Based Medicine levels of evidence. We performed meta-analysis, with subgroup analysis based on type and age at neuromodulation. To determine the patterns of neuromodulation-induced brain network activation, we performed normative functional connectivity using rsfMRI of 1000 healthy subjects. Six studies, with 242 AD patients, met inclusion criteria. On fixed-effect meta-analysis, non-invasive neuromodulation favored baseline, with effect size −0.40(95% [CI], −0.73, −0.06, p = 0.02), while that of DBS was 0.11(95% [CI] −0.34, 0.56, p = 0.63), in favor of DBS. In patients ≥65 years old, DBS improved cognitive outcome, 0.95(95% [CI] 0.31, 1.58, p = 0.004), whereas in patients <65 years old baseline was favored, −0.17(95% [CI] −0.93, 0.58, p = 0.65). Functional connectivity regions were in the default mode (DMN), salience (SN), central executive (CEN) networks, and Papez circuit. The subgenual cingulate and anterior limb of internal capsule (ALIC) showed connectivity to all targets of neuromodulation. This meta-analysis provides level II evidence of a difference in response of AD patients to DBS, based on age at intervention. Brain stimulation in AD may modulate DMN, SN, CEN, and Papez circuit, with the subgenual cingulate and ALIC as potential targets.
nature.com
以上显示的是最相近的搜索结果。 查看全部搜索结果