Construction of superhydrophobic graphene-based coating on steel substrate and its ultraviolet durability and corrosion resistance properties

ME Mohamed, PS Mekhaiel, FM Mahgoub - Scientific Reports, 2023 - nature.com
Scientific Reports, 2023nature.com
For the first time, a facile and environmentally friendly approach for producing high-quality
graphene from the biomass of banana leaves is described in this paper. Two rough coats of
Ni-graphene, Ni@ G, and Ni-graphene doped with chromium, Ni@ Cr-G, were created on
steel substrates by electrostatic deposition. These coatings were then submerged in an
ethanolic solution of myristic acid, MA, to produce a superhydrophobic, SHP, surface. The
Raman spectra demonstrated that the generated graphene was of high quality. Fourier …
Abstract
For the first time, a facile and environmentally friendly approach for producing high-quality graphene from the biomass of banana leaves is described in this paper. Two rough coats of Ni-graphene, Ni@G, and Ni-graphene doped with chromium, Ni@Cr-G, were created on steel substrates by electrostatic deposition. These coatings were then submerged in an ethanolic solution of myristic acid, MA, to produce a superhydrophobic, SHP, surface. The Raman spectra demonstrated that the generated graphene was of high quality. Fourier transform infrared spectroscopy findings confirm the modification of the Ni@G coating by MA, Ni@G@MA, and the modification of the Ni@Cr-G composite with MA, Ni@Cr-G@MA. The results of the scanning electron microscope revealed that the created SHP coatings have nanoscale features. The wettability results showed that the water contact angle values for Ni@G@MA and Ni@Cr-G@MA coatings are 158° and 168°, while the water sliding angle values for both coatings are 4.0 o and 1.0°, respectively. The atomic force microscopy results show that both Ni@G and Ni@Cr-G coatings increase the roughness of the steel. The chemical and mechanical stability of the Ni@Cr-G@MA coating was higher than those of the Ni@G@MA coating. The coated steel by Ni@Cr-G@MA exhibits UV stability up to 110 h, while the SHP-coated steel by Ni@G@MA exhibits UV stability for 60 h. The potentiodynamic polarization results show that the value of the corrosion current density for bare steel is 13 times that of steel coated with Ni@G@MA, and 21 times that of coated steel with Ni@Cr-G@MA. The electrochemical impedance spectroscopy, EIS, results show that the charge transfer resistance for steel coated with Ni@G@MA is 38 times that of bare steel, while steel coated with Ni@Cr-G@MA is 57 times that of bare steel. Potentiodynamic polarization and EIS results show that the SHP Ni@Cr-G@MA film exhibits higher corrosion resistance than Ni@G@MA film.
nature.com
以上显示的是最相近的搜索结果。 查看全部搜索结果