[PDF][PDF] Convection heat transfer from heated thin cylinders inside a ventilated enclosure

A Riaz, A Ibrahim, MS Bashir, M Abdullah… - Semiconductor …, 2022 - academia.edu
Semiconductor Science and Information Devices, 2022academia.edu
Experimental study was conducted to determine the effect of velocity of axial fan, outlet vent
height, position, area, and aspect ratio (h/w) of ventilated enclosure on convection heat
transfer. Rectangular wooden ventilated enclosure having top and front transparent wall was
made up of Perspex for visualization, and internal physical dimensions of box were 200
mm× 200 mm× 400 mm. Inlet vent was at bottom while outlet vents were at the side and top
wall. Electrically heated cylindrical heat source having 6.1 slenderness ratio was fabricated …
Experimental study was conducted to determine the effect of velocity of axial fan, outlet vent height, position, area, and aspect ratio (h/w) of ventilated enclosure on convection heat transfer. Rectangular wooden ventilated enclosure having top and front transparent wall was made up of Perspex for visualization, and internal physical dimensions of box were 200 mm× 200 mm× 400 mm. Inlet vent was at bottom while outlet vents were at the side and top wall. Electrically heated cylindrical heat source having 6.1 slenderness ratio was fabricated and hanged at the centre of the enclosure. To calculate heat transfer rates, thermocouples were attached to the inner surface of heat source with silica gel. Heat source was operated at constant heat flux in order to quantify the effect of velocity of air on heat transfer. It was observed that average Nusselt number was increased from 68 to 216 by changing velocity from 0 to 3.34 m/s at constant modified Grashof number ie 5.67 E+ 09. While variation in outlet height at the front wall did not affect heat transfer in forced convection region. However, Nusselt number decreased to 5% by changing the outlet position from top to the front wall or by 50% reduction in outlet area during forced convection. Mean rise in temperature of enclosure increased from 8.19 K to 9.40 K by increasing aspect ratio of enclosure from 1.5 to 2 by operating heat source at constant heat flux ie 541.20 w/m2.
academia.edu
以上显示的是最相近的搜索结果。 查看全部搜索结果