Developing a bi-objective mathematical model to design the fish closed-loop supply chain

M Fasihi, R Tavakkoli-Moghaddam, SE Najafi… - International Journal of …, 2021 - ije.ir
M Fasihi, R Tavakkoli-Moghaddam, SE Najafi, M Hajiaghaei-Keshteli
International Journal of Engineering, 2021ije.ir
In recent years, many industries in developed countries have integrated the important
process of reverse logistics into their supply chain for different reasons, including growing
environmental concerns. Given fish as perishable food, re-employing unused products and
waste in each step of the chain constitute a major concern for the decision-makers. The
present study is conducted to maximize responsiveness to customer demand and minimize
the cost of the fish closed-loop supply chain (CLSC) by proposing a novel mathematical …
In recent years, many industries in developed countries have integrated the important process of reverse logistics into their supply chain for different reasons, including growing environmental concerns. Given fish as perishable food, re-employing unused products and waste in each step of the chain constitute a major concern for the decision-makers. The present study is conducted to maximize responsiveness to customer demand and minimize the cost of the fish closed-loop supply chain (CLSC) by proposing a novel mathematical model. To solve this model, the epsilon-constraint method and Lp-metric were employed. Then, the solution methods were compared with each other based on the performance metrics and a statistical hypothesis. The superior method is ultimately determined using the TOPSIS method. The model application is tested on a case study of the trout CLSC in the north of Iran by performing a sensitivity analysis of demand. This analysis showed the promising results of using the proposed solution method and model.
ije.ir
以上显示的是最相近的搜索结果。 查看全部搜索结果