Distributed iterative thresholding for ℓ0/ℓ1-regularized linear inverse problems
The ℓ 0/ℓ 1-regularized least-squares approach is used to deal with linear inverse problems
under sparsity constraints, which arise in mathematical and engineering fields. In particular,
multiagent models have recently emerged in this context to describe diverse kinds of
networked systems, ranging from medical databases to wireless sensor networks. In this
paper, we study methods for solving ℓ 0/ℓ 1-regularized leastsquares problems in such
multiagent systems. We propose a novel class of distributed protocols based on iterative …
under sparsity constraints, which arise in mathematical and engineering fields. In particular,
multiagent models have recently emerged in this context to describe diverse kinds of
networked systems, ranging from medical databases to wireless sensor networks. In this
paper, we study methods for solving ℓ 0/ℓ 1-regularized leastsquares problems in such
multiagent systems. We propose a novel class of distributed protocols based on iterative …
The ℓ 0 /ℓ 1 -regularized least-squares approach is used to deal with linear inverse problems under sparsity constraints, which arise in mathematical and engineering fields. In particular, multiagent models have recently emerged in this context to describe diverse kinds of networked systems, ranging from medical databases to wireless sensor networks. In this paper, we study methods for solving ℓ 0 /ℓ 1 -regularized leastsquares problems in such multiagent systems. We propose a novel class of distributed protocols based on iterative thresholding and input driven consensus techniques, which are well-suited to work in-network when the communication to a central processing unit is not allowed. Estimation is performed by the agents themselves, which typically consist of devices with limited computational capabilities. This motivates us to develop low-complexity and low-memory algorithms that are feasible in real applications. Our main result is a rigorous proof of the convergence of these methods in regular networks. We introduce a suitable distributed, regularized, least-squares functional, and we prove that our algorithms reach their minima using results from dynamical systems theory. Furthermore, we propose numerical comparisons with the alternating direction method of multipliers and the distributed subgradient methods, in terms of performance, complexity, and memory usage. We conclude that our techniques are preferable for their good memory-accuracy tradeoff.
ieeexplore.ieee.org
以上显示的是最相近的搜索结果。 查看全部搜索结果