Experimental and numerical modelling of the residual stresses induced in orthogonal cutting of AISI 316L steel
JC Outeiro, D Umbrello, R M'saoubi - International Journal of Machine …, 2006 - Elsevier
JC Outeiro, D Umbrello, R M'saoubi
International Journal of Machine Tools and Manufacture, 2006•ElsevierResidual stresses in the machined surface layers are affected by the cutting tool, work
material, cutting regime parameters (cutting speed, feed and depth of cut) and contact
conditions at the tool/chip and tool/workpiece interfaces. In this paper, the effects of tool
geometry, tool coating and cutting regime parameters on residual stress distribution in the
machined surface and subsurface of AISI 316L steel are experimentally and numerically
investigated. In the former case, the X-ray diffraction technique is applied, while in the latter …
material, cutting regime parameters (cutting speed, feed and depth of cut) and contact
conditions at the tool/chip and tool/workpiece interfaces. In this paper, the effects of tool
geometry, tool coating and cutting regime parameters on residual stress distribution in the
machined surface and subsurface of AISI 316L steel are experimentally and numerically
investigated. In the former case, the X-ray diffraction technique is applied, while in the latter …
Residual stresses in the machined surface layers are affected by the cutting tool, work material, cutting regime parameters (cutting speed, feed and depth of cut) and contact conditions at the tool/chip and tool/workpiece interfaces. In this paper, the effects of tool geometry, tool coating and cutting regime parameters on residual stress distribution in the machined surface and subsurface of AISI 316L steel are experimentally and numerically investigated. In the former case, the X-ray diffraction technique is applied, while in the latter an elastic–viscoplastic FEM formulation is implemented. The results show that residual stresses increase with most of the cutting parameters, including cutting speed, uncut chip thickness and tool cutting edge radius. However, from the range of cutting parameters investigated, uncut chip thickness seems to be the parameter that has the strongest influence on residual stresses. The results also show that sequential cuts tend to increase superficial residual stresses.
Elsevier
以上显示的是最相近的搜索结果。 查看全部搜索结果