Explainable Gated Bayesian Recurrent Neural Network for Non-Markov State Estimation
IEEE Transactions on Signal Processing, 2024•ieeexplore.ieee.org
The optimality of Bayesian filtering relies on the completeness of prior models, while deep
learning holds a distinct advantage in learning models from offline data. Nevertheless, the
current fusion of these two methodologies remains largely ad hoc, lacking a theoretical
foundation. This paper presents a novel solution, namely an explainable gated Bayesian
recurrent neural network specifically designed to state estimation under model mismatches.
Firstly, we transform the non-Markov state-space model into an equivalent first-order Markov …
learning holds a distinct advantage in learning models from offline data. Nevertheless, the
current fusion of these two methodologies remains largely ad hoc, lacking a theoretical
foundation. This paper presents a novel solution, namely an explainable gated Bayesian
recurrent neural network specifically designed to state estimation under model mismatches.
Firstly, we transform the non-Markov state-space model into an equivalent first-order Markov …
The optimality of Bayesian filtering relies on the completeness of prior models, while deep learning holds a distinct advantage in learning models from offline data. Nevertheless, the current fusion of these two methodologies remains largely ad hoc, lacking a theoretical foundation. This paper presents a novel solution, namely an explainable gated Bayesian recurrent neural network specifically designed to state estimation under model mismatches. Firstly, we transform the non-Markov state-space model into an equivalent first-order Markov model with memory. It is a generalized transformation that overcomes the limitations of the first-order Markov property and enables recursive filtering. Secondly, by deriving a data-assisted joint state-memory-mismatch Bayesian filtering, we design a Bayesian gated framework that includes a memory update gate for capturing the temporal regularities in state evolution, a state prediction gate with the evolution mismatch compensation, and a state update gate with the observation mismatch compensation. The Gaussian approximation implementation of the filtering process within the gated framework is derived, taking into account the computational efficiency. Finally, the corresponding internal neural network structures and end-to-end training methods are designed. The Bayesian filtering theory enhances the interpretability of the proposed gated network, enabling the effective integration of offline data and prior models within functionally explicit gated units. In comprehensive experiments, including simulations and real-world datasets, the proposed gated network demonstrates superior estimation performance compared to benchmark filters and state-of-the-art deep learning filtering methods.
ieeexplore.ieee.org
以上显示的是最相近的搜索结果。 查看全部搜索结果