Fast generation of ultrastable computer glasses by minimization of an augmented potential energy
Physical Review E, 2019•APS
We present a model and protocol that enable the generation of extremely stable computer
glasses at minimal computational cost. The protocol consists of an instantaneous quench in
an augmented potential energy landscape, with particle radii as additional degrees of
freedom. We demonstrate how our glasses' mechanical stability, which is readily tunable in
our approach, is reflected in both microscopic and macroscopic observables. Our
observations indicate that the stability of our computer glasses is at least comparable to that …
glasses at minimal computational cost. The protocol consists of an instantaneous quench in
an augmented potential energy landscape, with particle radii as additional degrees of
freedom. We demonstrate how our glasses' mechanical stability, which is readily tunable in
our approach, is reflected in both microscopic and macroscopic observables. Our
observations indicate that the stability of our computer glasses is at least comparable to that …
We present a model and protocol that enable the generation of extremely stable computer glasses at minimal computational cost. The protocol consists of an instantaneous quench in an augmented potential energy landscape, with particle radii as additional degrees of freedom. We demonstrate how our glasses' mechanical stability, which is readily tunable in our approach, is reflected in both microscopic and macroscopic observables. Our observations indicate that the stability of our computer glasses is at least comparable to that of computer glasses generated by the celebrated Swap Monte Carlo algorithm. Strikingly, some key properties support even qualitatively enhanced stability in our scheme: the density of quasilocalized excitations displays a gap in our most stable computer glasses, whose magnitude scales with the polydispersity of the particles. We explain this observation, which is consistent with the lack of plasticity we observe at small stress. It also suggests that these glasses are depleted from two-level systems, similarly to experimental vapor-deposited ultrastable glasses.
American Physical Society
以上显示的是最相近的搜索结果。 查看全部搜索结果