Gcn4 misregulation reveals a direct role for the evolutionary conserved EKC/KEOPS in the t6A modification of tRNAs

MC Daugeron, TL Lenstra, M Frizzarin… - Nucleic acids …, 2011 - academic.oup.com
MC Daugeron, TL Lenstra, M Frizzarin, B El Yacoubi, X Liu, A Baudin-Baillieu, P Lijnzaad
Nucleic acids research, 2011academic.oup.com
The EKC/KEOPS complex is universally conserved in Archaea and Eukarya and has been
implicated in several cellular processes, including transcription, telomere homeostasis and
genomic instability. However, the molecular function of the complex has remained elusive so
far. We analyzed the transcriptome of EKC/KEOPS mutants and observed a specific profile
that is highly enriched in targets of the Gcn4p transcriptional activator. GCN4 expression
was found to be activated at the translational level in mutants via the defective recognition of …
Abstract
The EKC/KEOPS complex is universally conserved in Archaea and Eukarya and has been implicated in several cellular processes, including transcription, telomere homeostasis and genomic instability. However, the molecular function of the complex has remained elusive so far. We analyzed the transcriptome of EKC/KEOPS mutants and observed a specific profile that is highly enriched in targets of the Gcn4p transcriptional activator. GCN4 expression was found to be activated at the translational level in mutants via the defective recognition of the inhibitory upstream ORFs (uORFs) present in its leader. We show that EKC/KEOPS mutants are defective for the N6-threonylcarbamoyl adenosine modification at position 37 (t6A37) of tRNAs decoding ANN codons, which affects initiation at the inhibitory uORFs and provokes Gcn4 de-repression. Structural modeling reveals similarities between Kae1 and bacterial enzymes involved in carbamoylation reactions analogous to t6A37 formation, supporting a direct role for the EKC in tRNA modification. These findings are further supported by strong genetic interactions of EKC mutants with a translation initiation factor and with threonine biosynthesis genes. Overall, our data provide a novel twist to understanding the primary function of the EKC/KEOPS and its impact on several essential cellular functions like transcription and telomere homeostasis.
Oxford University Press
以上显示的是最相近的搜索结果。 查看全部搜索结果