Genetic association studies of methamphetamine use disorders: a systematic review and synthesis

CA Bousman, SJ Glatt, IP Everall… - American Journal of …, 2009 - Wiley Online Library
American Journal of Medical Genetics Part B: Neuropsychiatric Genetics, 2009Wiley Online Library
Efforts to understand the biological processes that increase susceptibility to
methamphetamine (METH) use disorders (ie, abuse, dependence, and psychosis) have
uncovered several putative genotypic variants. However, to date a synthesis of this
information has not been conducted. Thus, systematic searches of the current literature were
undertaken for genetic‐association studies of METH use disorders. Each gene's
chromosomal location, function, and examined polymorphic markers were extracted …
Abstract
Efforts to understand the biological processes that increase susceptibility to methamphetamine (METH) use disorders (i.e., abuse, dependence, and psychosis) have uncovered several putative genotypic variants. However, to date a synthesis of this information has not been conducted. Thus, systematic searches of the current literature were undertaken for genetic‐association studies of METH use disorders. Each gene's chromosomal location, function, and examined polymorphic markers were extracted. Frequencies, odds ratios and 95% confidence intervals for risk alleles, as well as sample size and power, were calculated. We uncovered 38 studies examining 39 genes, of which 18 were found to have a significant genotypic, allelic, and/or haplotypic association with METH use disorders. Three genes (COMT, DRD4, and GABRA1) were associated with METH abuse, nine (ARRB2, BDNF, CYP2D6, GLYT1, GSTM1, GSTP1, PDYN, PICK1, and SLC22A3) with METH dependence, two (AKT1 and GABRG2) with METH abuse/dependence, and four (DTNBP1, OPRM1, SNCA, and SOD2) with METH psychosis. Limitations related to phenotypic classification, statistical power, and potential publication bias in the current literature were noted. Similar to other behavioral, psychiatric, and substance use disorders, the genetic epidemiology of METH use disorders is complex and likely polygenic. National and international collaborative efforts are needed to increase the availability of large population‐based samples and improve upon the power to detect genetic associations of small magnitude. Further, replication of the findings reviewed here along with further development of more rigorous methodologies and reporting protocols will aid in delineating the complex genetic epidemiology of METH use disorders. © 2009 Wiley‐Liss, Inc.
Wiley Online Library
以上显示的是最相近的搜索结果。 查看全部搜索结果