Higherhrnet: Scale-aware representation learning for bottom-up human pose estimation
Proceedings of the IEEE/CVF conference on computer vision and …, 2020•openaccess.thecvf.com
Bottom-up human pose estimation methods have difficulties in predicting the correct pose for
small persons due to challenges in scale variation. In this paper, we present HigherHRNet: a
novel bottom-up human pose estimation method for learning scale-aware representations
using high-resolution feature pyramids. Equipped with multi-resolution supervision for
training and multi-resolution aggregation for inference, the proposed approach is able to
solve the scale variation challenge in bottom-up multi-person pose estimation and localize …
small persons due to challenges in scale variation. In this paper, we present HigherHRNet: a
novel bottom-up human pose estimation method for learning scale-aware representations
using high-resolution feature pyramids. Equipped with multi-resolution supervision for
training and multi-resolution aggregation for inference, the proposed approach is able to
solve the scale variation challenge in bottom-up multi-person pose estimation and localize …
Abstract
Bottom-up human pose estimation methods have difficulties in predicting the correct pose for small persons due to challenges in scale variation. In this paper, we present HigherHRNet: a novel bottom-up human pose estimation method for learning scale-aware representations using high-resolution feature pyramids. Equipped with multi-resolution supervision for training and multi-resolution aggregation for inference, the proposed approach is able to solve the scale variation challenge in bottom-up multi-person pose estimation and localize keypoints more precisely, especially for small person. The feature pyramid in HigherHRNet consists of feature map outputs from HRNet and upsampled higher-resolution outputs through a transposed convolution. HigherHRNet outperforms the previous best bottom-up method by 2.5% AP for medium person on COCO test-dev, showing its effectiveness in handling scale variation. Furthermore, HigherHRNet achieves new state-of-the-art result on COCO test-dev (70.5% AP) without using refinement or other post-processing techniques, surpassing all existing bottom-up methods. HigherHRNet even surpasses all top-down methods on CrowdPose test (67.6% AP), suggesting its robustness in crowded scene.
openaccess.thecvf.com
以上显示的是最相近的搜索结果。 查看全部搜索结果