Hydrological connectivity of hillslopes and streams: Characteristic time scales and nonlinearities

KJ McGuire, JJ McDonnell - Water Resources Research, 2010 - Wiley Online Library
Water Resources Research, 2010Wiley Online Library
Subsurface flow from hillslopes is widely recognized as an important contributor to
streamflow generation; however, processes that control how and when hillslopes connect to
streams remain unclear. We investigated stream and hillslope runoff dynamics through a wet‐
up period in watershed 10 of the HJ Andrews Experimental Forest in the western Cascades
of Oregon where the riparian zone has been removed by debris flows. We examined the
controls on hillslope‐stream connectivity on the basis of observations of hydrometric, stable …
Subsurface flow from hillslopes is widely recognized as an important contributor to streamflow generation; however, processes that control how and when hillslopes connect to streams remain unclear. We investigated stream and hillslope runoff dynamics through a wet‐up period in watershed 10 of the H. J. Andrews Experimental Forest in the western Cascades of Oregon where the riparian zone has been removed by debris flows. We examined the controls on hillslope‐stream connectivity on the basis of observations of hydrometric, stable isotope, and applied tracer responses and computed transit times for multiple runoff components for a series of storms during the wet‐up phase of the 2002–2003 winter rainy season. Hillslope discharge was distinctly threshold‐like with a near linear response and average quick flow ratio of 0.58 when antecedent rainfall was greater than 20 mm. Hillslope and stream stormflow varied temporally and showed strong hysteretic relationships. Event water mean transit times (8–34 h) and rapid breakthrough from applied hillslope tracer additions demonstrated that subsurface contributing areas extend far upslope during events. Despite rapid hillslope transport processes during events, soil water and runoff mean transit times during nonstorm conditions were greater than the time scale of storm events. Soil water mean transit times ranged between 10 and 25 days. Hillslope seepage and catchment base flow mean transit times were between 1 and 2 years. We describe a conceptual model that captures variable physical flow pathways, their synchronicity, threshold activation, hysteresis, and transit times through changing antecedent wetness conditions that illustrate the different stages of hillslope and stream connectivity.
Wiley Online Library
以上显示的是最相近的搜索结果。 查看全部搜索结果