Improved performance for inverted organic photovoltaics via spacer between benzodithiophene and benzothiazole in polymers
L Mohammad, Q Chen, A Mitul, J Sun… - The Journal of …, 2015 - ACS Publications
The Journal of Physical Chemistry C, 2015•ACS Publications
In this work, the effects of the spacer between benzo [1, 2-b; 3, 4-b′] dithiophene (BDT) and
dialkoxybenzothiadiazole (ROBT) in polymers were investigated for applications in organic
solar cells. Polymer PBDT–2T–ROBT has a bithiophene (2T) spacer between the BDT and
ROBT units, whereas PBDT–ROBT is a direct copolymer of BDT and ROBT. The
polymer/PC70BM solar cells using both polymers were fabricated and optimized via
polymer/fullerene ratio, solvent, and solvent additives. The spacer has significantly improved …
dialkoxybenzothiadiazole (ROBT) in polymers were investigated for applications in organic
solar cells. Polymer PBDT–2T–ROBT has a bithiophene (2T) spacer between the BDT and
ROBT units, whereas PBDT–ROBT is a direct copolymer of BDT and ROBT. The
polymer/PC70BM solar cells using both polymers were fabricated and optimized via
polymer/fullerene ratio, solvent, and solvent additives. The spacer has significantly improved …
In this work, the effects of the spacer between benzo[1,2-b;3,4-b′]dithiophene (BDT) and dialkoxybenzothiadiazole (ROBT) in polymers were investigated for applications in organic solar cells. Polymer PBDT–2T–ROBT has a bithiophene (2T) spacer between the BDT and ROBT units, whereas PBDT–ROBT is a direct copolymer of BDT and ROBT. The polymer/PC70BM solar cells using both polymers were fabricated and optimized via polymer/fullerene ratio, solvent, and solvent additives. The spacer has significantly improved solar cell performance from 1.28% (Voc =0.77 V, Jsc = 3.13 mA/cm2, FF = 53.11%) to 5.11% (Voc = 0.66 V, Jsc = 13.33 mA/cm2, FF = 58.12%). The X-ray diffraction (XRD) spectra show the PBDT–2T–ROBT/PC70BM blended film is semicrystalline, whereas the PBDT–ROBT/PC70BM film is amorphous. This indicates that the spacer facilitates polymer organization for higher carrier mobility in the film. Atomic force microscopy (AFM) topography and phase images show that PBDT–2T–ROBT/PC70BM films form fibrillar networks, whereas PBDT–ROBT/PC70BM films exhibit larger granular morphology. The photoinduced charge extraction by linearly increasing voltage (Photo-CELIV) measurements show that PBDT–2T–ROBT/PC70BM has a mobility of 9.59 × 10–5 cm2/(V·s), which is higher than the mobility of 8.64 × 10–5 cm2/(V·s) for PBDT–ROBT/PC70BM film.
ACS Publications
以上显示的是最相近的搜索结果。 查看全部搜索结果