[HTML][HTML] Improvement of cadmium tolerance and accumulation of Phragmites spp. Tabarka by ethyl methane sulfonate mutagenesis

YN Kim, J Kim, J Lee, S Kim, KA Lee… - Journal of Plant …, 2020 - kspbtjpb.org
YN Kim, J Kim, J Lee, S Kim, KA Lee, SH Kim
Journal of Plant Biotechnology, 2020kspbtjpb.org
Reed (Phragmites spp.) is a rhizomatous plant of the Poaceae family and is known as high
tolerant plant to heavy metal contaminants. This plant is widely recognized as a Cd root-
accumulator, but improved heavy metal tolerance and uptake capacity are still required for
phytoremediation efficiency. To enhance capacity of hyperaccumulator plants, ethyl
methane sulfonate (EMS) as chemical mutagen has been introduced and applied to
remediation approaches. This study aimed to select EMS-mutagenized reeds representing …
Reed (Phragmites spp.) is a rhizomatous plant of the Poaceae family and is known as high tolerant plant to heavy metal contaminants. This plant is widely recognized as a Cd root-accumulator, but improved heavy metal tolerance and uptake capacity are still required for phytoremediation efficiency. To enhance capacity of hyperaccumulator plants, ethyl methane sulfonate (EMS) as chemical mutagen has been introduced and applied to remediation approaches. This study aimed to select EMS-mutagenized reeds representing high Cd resistance and large biomass and to investigate their ability of Cd accumulation. After 6 months cultivation of M 2 mutant reeds under Cd stress conditions (up to 1,500 μM), we discovered seven mutant individuals that showed good performances like survivorship, vitality, and high accumulation of Cd, particularly in their roots. Compared to wild type (WT) reeds as control, on average, dry weight of mutant type (MT) reeds was larger by 2 and 1.5 times in roots and shoots, respectively. In addition, these mutant plants accumulated 6 times more Cd, mostly in the roots. In particular, MT8 reeds showed the greatest ability to accumulate Cd. These results suggest that EMS mutagenesis could generate hyperaccumulator plants with enhanced Cd tolerance and biomass, thereby contributing to improvement of phytoremediation efficiency in Cd-contaminated soil or wastewater. Further studies should focus on identifying Cd tolerance mechanisms of such EMS-mutagenized plants, developing techniques for its biomass production, and investigating the practical potential of the EMS mutants for phytoremediation.
kspbtjpb.org
以上显示的是最相近的搜索结果。 查看全部搜索结果