Influence of structure on exchange strength and relaxation barrier in a series of Fe II Re IV (CN) 2 single-chain magnets

X Feng, TD Harris, JR Long - Chemical Science, 2011 - pubs.rsc.org
Chemical Science, 2011pubs.rsc.org
Cyano-bridged single-chain magnets of the type L4FeReCl4 (CN) 2, where L=
diethylformamide (DEF)(1), dibutylformamide (DBF)(2), dimethylformamide (DMF)(3),
dimethylbutyramide (DMB)(4), dimethylpropionamide (DMP)(5), and diethylacetamide
(DEA)(6), have been synthesized to enable a systematic study of the influence of structural
perturbations on magnetic exchange and relaxation barrier. Across the series, varying the
amide ligand leads to Fe–N–C bond angles ranging from 154.703 (7)° in 1 to 180° in 6 …
Cyano-bridged single-chain magnets of the type L4FeReCl4(CN)2, where L = diethylformamide (DEF) (1), dibutylformamide (DBF) (2), dimethylformamide (DMF) (3), dimethylbutyramide (DMB) (4), dimethylpropionamide (DMP) (5), and diethylacetamide (DEA) (6), have been synthesized to enable a systematic study of the influence of structural perturbations on magnetic exchange and relaxation barrier. Across the series, varying the amide ligand leads to Fe–N–C bond angles ranging from 154.703(7)° in 1 to 180° in 6. Variable-temperature dc magnetic susceptibility data indicate ferromagnetic exchange coupling in all compounds, with the strength of exchange increasing linearly, from J = +4.2(2) cm−1 to +7.2(3) cm−1, with increasing Fe–N–C bond angle. Ac magnetic susceptibility data collected as a function of frequency reveal that the relaxation barrier of the chain compounds rises steeply with increasing exchange strength, from 45 cm−1 to 93 cm−1. This examination demonstrates that subtle tuning of orbital overlap, and thus exchange strength, can engender dramatic changes in the relaxation barrier. Indeed, the perfectly linear Fe–N–C bond angle in 6 leads to one of the highest barriers and coercive fields yet observed for a single-chain magnet.
The Royal Society of Chemistry
以上显示的是最相近的搜索结果。 查看全部搜索结果