Learning robust LQ-controllers using application oriented exploration

M Ferizbegovic, J Umenberger… - IEEE Control …, 2019 - ieeexplore.ieee.org
IEEE Control Systems Letters, 2019ieeexplore.ieee.org
This letter concerns the problem of learning robust LQ-controllers, when the dynamics of the
linear system are unknown. First, we propose a robust control synthesis method to minimize
the worst-case LQ cost, with probability 1-δ, given empirical observations of the system.
Next, we propose an approximate dual controller that simultaneously regulates the system
and reduces model uncertainty. The objective of the dual controller is to minimize the worst-
case cost attained by a new robust controller, synthesized with the reduced model …
This letter concerns the problem of learning robust LQ-controllers, when the dynamics of the linear system are unknown. First, we propose a robust control synthesis method to minimize the worst-case LQ cost, with probability 1 - δ, given empirical observations of the system. Next, we propose an approximate dual controller that simultaneously regulates the system and reduces model uncertainty. The objective of the dual controller is to minimize the worst-case cost attained by a new robust controller, synthesized with the reduced model uncertainty. The dual controller is subject to an exploration budget in the sense that it has constraints on its worst-case cost with respect to the current model uncertainty. In our numerical experiments, we observe better performance of the proposed robust LQ regulator over the existing methods. Moreover, the dual control strategy gives promising results in comparison with the common greedy random exploration strategies.
ieeexplore.ieee.org
以上显示的是最相近的搜索结果。 查看全部搜索结果