MEK1/2 inhibition promotes macrophage reparative properties

ME Long, WE Eddy, KQ Gong… - The Journal of …, 2017 - journals.aai.org
ME Long, WE Eddy, KQ Gong, LL Lovelace-Macon, RS McMahan, J Charron, WC Liles
The Journal of Immunology, 2017journals.aai.org
Macrophages have important functional roles in regulating the timely promotion and
resolution of inflammation. Although many of the intracellular signaling pathways involved in
the proinflammatory responses of macrophages are well characterized, the components that
regulate macrophage reparative properties are less well understood. We identified the
MEK1/2 pathway as a key regulator of macrophage reparative properties. Pharmacological
inhibition of the MEK1/2 pathway by a MEK1/2 inhibitor (MEKi) significantly increased …
Abstract
Macrophages have important functional roles in regulating the timely promotion and resolution of inflammation. Although many of the intracellular signaling pathways involved in the proinflammatory responses of macrophages are well characterized, the components that regulate macrophage reparative properties are less well understood. We identified the MEK1/2 pathway as a key regulator of macrophage reparative properties. Pharmacological inhibition of the MEK1/2 pathway by a MEK1/2 inhibitor (MEKi) significantly increased expression of IL-4/IL-13 (M2)-responsive genes in murine bone marrow–derived and alveolar macrophages. Deletion of the MEK1 gene using LysM Cre+/+ Mek1 fl/fl macrophages as an alternate approach yielded similar results. MEKi enhanced STAT6 phosphorylation, and MEKi-induced changes in M2 polarization were dependent on STAT6. In addition, MEKi treatment significantly increased murine and human macrophage efferocytosis of apoptotic cells, independent of macrophage polarization and STAT6. These phenotypes were associated with increased gene and protein expression of Mertk, Tyro3, and Abca1, three proteins that promote macrophage efferocytosis. We also studied the effects of MEKi on in vivo macrophage efferocytosis and polarization. MEKi-treated mice had increased efferocytosis of apoptotic polymorphonuclear leukocytes instilled into the peritoneum. Furthermore, administration of MEKi after LPS-induced lung injury led to improved recovery of weight, fewer neutrophils in the alveolar compartment, and greater macrophage M2 polarization. Collectively, these results show that MEK1/2 inhibition is capable of promoting the reparative properties of murine and human macrophages. These studies suggest that the MEK1/2 pathway may be a therapeutic target to promote the resolution of inflammation via modulation of macrophage functions.
journals.aai.org
以上显示的是最相近的搜索结果。 查看全部搜索结果