Mathematical model for thermal and entropy analysis of thermal solar collectors by using Maxwell nanofluids with slip conditions, thermal radiation and variable …
In the present research a simplified mathematical model for the solar thermal collectors is
considered in the form of non-uniform unsteady stretching surface. The non-Newtonian
Maxwell nanofluid model is utilized for the working fluid along with slip and convective
boundary conditions and comprehensive analysis of entropy generation in the system is
also observed. The effect of thermal radiation and variable thermal conductivity are also
included in the present model. The mathematical formulation is carried out through a …
considered in the form of non-uniform unsteady stretching surface. The non-Newtonian
Maxwell nanofluid model is utilized for the working fluid along with slip and convective
boundary conditions and comprehensive analysis of entropy generation in the system is
also observed. The effect of thermal radiation and variable thermal conductivity are also
included in the present model. The mathematical formulation is carried out through a …
Abstract
In the present research a simplified mathematical model for the solar thermal collectors is considered in the form of non-uniform unsteady stretching surface. The non-Newtonian Maxwell nanofluid model is utilized for the working fluid along with slip and convective boundary conditions and comprehensive analysis of entropy generation in the system is also observed. The effect of thermal radiation and variable thermal conductivity are also included in the present model. The mathematical formulation is carried out through a boundary layer approach and the numerical computations are carried out for Cu-water and TiO 2-water nanofluids. Results are presented for the velocity, temperature and entropy generation profiles, skin friction coefficient and Nusselt number. The discussion is concluded on the effect of various governing parameters on the motion, temperature variation, entropy generation, velocity gradient and the rate of heat transfer at the boundary.
De Gruyter
以上显示的是最相近的搜索结果。 查看全部搜索结果