Mechanical response of the quantum vacuum to dynamic deformations of a cavity
J Sarabadani, MF Miri - Physical Review A—Atomic, Molecular, and Optical …, 2006 - APS
Physical Review A—Atomic, Molecular, and Optical Physics, 2006•APS
We consider two dynamically deforming plates immersed in the vacuum of a scalar field. We
study both the (generalized) Neumann and the Dirichlet boundary conditions on the
surfaces. For rough plates undergoing small displacements parallel or perpendicular to the
normal axis, the mass correction, the vacuum viscosity, and the dissipation rate arising from
photon emission inside the cavity, are calculated. In the case of motion along the normal
axis, these quantities have no dependence on the shape of plates, and the Neumann ones …
study both the (generalized) Neumann and the Dirichlet boundary conditions on the
surfaces. For rough plates undergoing small displacements parallel or perpendicular to the
normal axis, the mass correction, the vacuum viscosity, and the dissipation rate arising from
photon emission inside the cavity, are calculated. In the case of motion along the normal
axis, these quantities have no dependence on the shape of plates, and the Neumann ones …
We consider two dynamically deforming plates immersed in the vacuum of a scalar field. We study both the (generalized) Neumann and the Dirichlet boundary conditions on the surfaces. For rough plates undergoing small displacements parallel or perpendicular to the normal axis, the mass correction, the vacuum viscosity, and the dissipation rate arising from photon emission inside the cavity, are calculated. In the case of motion along the normal axis, these quantities have no dependence on the shape of plates, and the Neumann ones are greater. We examine the specific example of two corrugated surfaces of a wave number and mean separation , performing lateral oscillation with a frequency . In contrast to Dirichlet photons, Neumann photons can be excited for all values of , , and . For short cavity lengths, the number of Neumann photons increases as . The phase difference between the harmonic motion of plates can be used to tune the dissipation rate. Neumann mass correction and dissipation rate are greater than Dirichlet ones. We calculated the force exerted on two corrugated plates that are moving uniformly in the lateral directions. This lateral force decreases as if , increases as if , and is stronger in the case of the Dirichlet boundary condition.
American Physical Society
以上显示的是最相近的搜索结果。 查看全部搜索结果