Monitoring blood pressure and cardiac function without positioning via a deep learning–assisted strain sensor array

S Li, H Wang, W Ma, L Qiu, K Xia, Y Zhang, H Lu… - Science …, 2023 - science.org
S Li, H Wang, W Ma, L Qiu, K Xia, Y Zhang, H Lu, M Zhu, X Liang, XE Wu, H Liang, Y Zhang
Science Advances, 2023science.org
Continuous and reliable monitoring of blood pressure and cardiac function is of great
importance for diagnosing and preventing cardiovascular diseases. However, existing
cardiovascular monitoring approaches are bulky and costly, limiting their wide applications
for early diagnosis. Here, we developed an intelligent blood pressure and cardiac function
monitoring system based on a conformal and flexible strain sensor array and deep learning
neural networks. The sensor has a variety of advantages, including high sensitivity, high …
Continuous and reliable monitoring of blood pressure and cardiac function is of great importance for diagnosing and preventing cardiovascular diseases. However, existing cardiovascular monitoring approaches are bulky and costly, limiting their wide applications for early diagnosis. Here, we developed an intelligent blood pressure and cardiac function monitoring system based on a conformal and flexible strain sensor array and deep learning neural networks. The sensor has a variety of advantages, including high sensitivity, high linearity, fast response and recovery, and high isotropy. Experiments and simulation synergistically verified that the sensor array can acquire high-precise and feature-rich pulse waves from the wrist without precise positioning. By combining high-quality pulse waves with a well-trained deep learning model, we can monitor blood pressure and cardiac function parameters. As a proof of concept, we further constructed an intelligent wearable system for real-time and long-term monitoring of blood pressure and cardiac function, which may contribute to personalized health management, precise and early diagnosis, and remote treatment.
AAAS
以上显示的是最相近的搜索结果。 查看全部搜索结果