Near-memory processing in action: Accelerating personalized recommendation with axdimm

L Ke, X Zhang, J So, JG Lee, SH Kang, S Lee… - IEEE Micro, 2021 - ieeexplore.ieee.org
L Ke, X Zhang, J So, JG Lee, SH Kang, S Lee, S Han, YG Cho, JH Kim, Y Kwon, KS Kim…
IEEE Micro, 2021ieeexplore.ieee.org
Near-memory processing (NMP) is a prospective paradigm enabling memory-centric
computing. By moving the compute capability next to the main memory (DRAM modules), it
can fundamentally address the CPU-memory bandwidth bottleneck and thus effectively
improve the performance of memory-constrained workloads. Using the personalized
recommendation system as a driving example, we developed a scalable, practical DIMM-
based NMP solution tailor-designed for accelerating the inference serving. Our solution is …
Near-memory processing (NMP) is a prospective paradigm enabling memory-centric computing. By moving the compute capability next to the main memory (DRAM modules), it can fundamentally address the CPU-memory bandwidth bottleneck and thus effectively improve the performance of memory-constrained workloads. Using the personalized recommendation system as a driving example, we developed a scalable, practical DIMM-based NMP solution tailor-designed for accelerating the inference serving. Our solution is demonstrated on a versatile FPGA-enabled NMP platform called AxDIMM that allows rapid prototyping and evaluation of NMP’s performance potential on real hardware under a realistic system setting using industry-representative recommendation framework. We experimentally validated the performance of a two-ranked AxDIMM prototype, which achieves up to 1.89× speedup in latency and 31.6% memory energy saving for embedding operations. For end-to-end recommendation inference serving, AxDIMM improves the throughput up to 1.5× and latency-bounded throughput up to 1.77×, respectively.
ieeexplore.ieee.org
以上显示的是最相近的搜索结果。 查看全部搜索结果