On the geometry of generalization and memorization in deep neural networks
arXiv preprint arXiv:2105.14602, 2021•arxiv.org
Understanding how large neural networks avoid memorizing training data is key to
explaining their high generalization performance. To examine the structure of when and
where memorization occurs in a deep network, we use a recently developed replica-based
mean field theoretic geometric analysis method. We find that all layers preferentially learn
from examples which share features, and link this behavior to generalization performance.
Memorization predominately occurs in the deeper layers, due to decreasing object …
explaining their high generalization performance. To examine the structure of when and
where memorization occurs in a deep network, we use a recently developed replica-based
mean field theoretic geometric analysis method. We find that all layers preferentially learn
from examples which share features, and link this behavior to generalization performance.
Memorization predominately occurs in the deeper layers, due to decreasing object …
Understanding how large neural networks avoid memorizing training data is key to explaining their high generalization performance. To examine the structure of when and where memorization occurs in a deep network, we use a recently developed replica-based mean field theoretic geometric analysis method. We find that all layers preferentially learn from examples which share features, and link this behavior to generalization performance. Memorization predominately occurs in the deeper layers, due to decreasing object manifolds' radius and dimension, whereas early layers are minimally affected. This predicts that generalization can be restored by reverting the final few layer weights to earlier epochs before significant memorization occurred, which is confirmed by the experiments. Additionally, by studying generalization under different model sizes, we reveal the connection between the double descent phenomenon and the underlying model geometry. Finally, analytical analysis shows that networks avoid memorization early in training because close to initialization, the gradient contribution from permuted examples are small. These findings provide quantitative evidence for the structure of memorization across layers of a deep neural network, the drivers for such structure, and its connection to manifold geometric properties.
arxiv.org
以上显示的是最相近的搜索结果。 查看全部搜索结果