Optimal high-throughput virtual screening pipeline for efficient selection of redox-active organic materials

HM Woo, O Allam, J Chen, SS Jang, BJ Yoon - Iscience, 2023 - cell.com
Iscience, 2023cell.com
As global interest in renewable energy continues to increase, there has been a pressing
need for developing novel energy storage devices based on organic electrode materials that
can overcome the shortcomings of the current lithium-ion batteries. One critical challenge for
this quest is to find materials whose redox potential (RP) meets specific design targets. In
this study, we propose a computational framework for addressing this challenge through the
effective design and optimal operation of a high-throughput virtual screening (HTVS) …
Summary
As global interest in renewable energy continues to increase, there has been a pressing need for developing novel energy storage devices based on organic electrode materials that can overcome the shortcomings of the current lithium-ion batteries. One critical challenge for this quest is to find materials whose redox potential (RP) meets specific design targets. In this study, we propose a computational framework for addressing this challenge through the effective design and optimal operation of a high-throughput virtual screening (HTVS) pipeline that enables rapid screening of organic materials that satisfy the desired criteria. Starting from a high-fidelity model for estimating the RP of a given material, we show how a set of surrogate models with different accuracy and complexity may be designed to construct a highly accurate and efficient HTVS pipeline. We demonstrate that the proposed HTVS pipeline construction and operation strategies substantially enhance the overall screening throughput.
cell.com
以上显示的是最相近的搜索结果。 查看全部搜索结果