Polymer–clay nanocomposites via chemical grafting of polyacrylonitrile onto cloisite 20A

Y Mansoori, K Roojaei, MR Zamanloo… - Bulletin of Materials …, 2012 - Springer
Bulletin of Materials Science, 2012Springer
The synthesis and characterization of polyacrylonitrile (PAN) nanocomposites through
grafting the polymer onto organophilic montmorillonite have been reported. Cloisite 20A
reacted with vinyltrichlorosilane to replace the edge hydroxyl groups of the clay with a vinyl
moiety. Because the reaction liberates HCl, it was performed in the presence of sodium
hydrogen carbonate to prevent the exchange of quaternary alkylammonium cations with H+
ions. Only the silanol groups on the edge of the clay reacted with vinyltrichlorosilane. The …
Abstract
The synthesis and characterization of polyacrylonitrile (PAN) nanocomposites through grafting the polymer onto organophilic montmorillonite have been reported. Cloisite 20A reacted with vinyltrichlorosilane to replace the edge hydroxyl groups of the clay with a vinyl moiety. Because the reaction liberates HCl, it was performed in the presence of sodium hydrogen carbonate to prevent the exchange of quaternary alkylammonium cations with H +  ions. Only the silanol groups on the edge of the clay reacted with vinyltrichlorosilane. The radical polymerization of the product with acrylonitrile (AN) as a vinyl monomer leads to chemical grafting of polyacrylonitrile onto montmorillonite surface. The homopolymer formed during polymerization was separated from the grafted organoclay by Soxhlet extraction. Chemical grafting of the polymer onto Cloisite 20A was confirmed by infrared spectroscopy. The prepared nanocomposite materials and grafted nanoparticles were studied by XRD and TEM. Exfoliated nanocomposites were obtained for 0·5–7 wt% clay content. The nanocomposites were studied by thermogravimetric analysis (TGA) and dynamic mechanical analysis (DMTA).
Springer
以上显示的是最相近的搜索结果。 查看全部搜索结果