Preparation and characterization of wollastonite/titanium oxide nanofiber bioceramic composite as a future implant material

IHM Aly, LAA Mohammed, S Al-Meer, K Elsaid… - Ceramics …, 2016 - Elsevier
Ceramics International, 2016Elsevier
In this study, novel composites consisting of electrospun titanium dioxide (TiO 2) nanofibers
incorporated into high-purity wollastonite glass ceramics were prepared as materials for use
in hard tissue engineering applications. These materials were characterized and
investigated by means of physical, mechanical and in vitro studies. The proposed composite
showed greater densification and better mechanical characteristics compared to pure
wollastonite. The influence of densification temperature and TiO 2 content was investigated …
Abstract
In this study, novel composites consisting of electrospun titanium dioxide (TiO2) nanofibers incorporated into high-purity wollastonite glass ceramics were prepared as materials for use in hard tissue engineering applications. These materials were characterized and investigated by means of physical, mechanical and in vitro studies. The proposed composite showed greater densification and better mechanical characteristics compared to pure wollastonite. The influence of densification temperature and TiO2 content was investigated. Typically, TiO2/wollastonite composites having 0, 10, 20 and 30 wt% metal oxide nanofibers were sintered at 900, 1100 and 1250 °C. The results indicated that increasing TiO2 nanofibers content leads to increase the bulk density, compressive strength and microhardness with negligible, high and moderate influence for the densification temperature, respectively. While porosity and water adsorption capacity decreased with increasing the metal oxide nanofibers with a considerable impact for the sintering temperature in both properties. Moreover, bone-like apatite formed on the surface of wollastonite and wollastonite/TiO2 nanofibers soaked in simulated body fluid (SBF). All these results show that the inclusion of TiO2 nanofibers improved the characteristics of wollastonite while preserving its in vitro bioactivity; hence, the proposed composite may be used as a bone substitute in high load bearing sites.
Elsevier
以上显示的是最相近的搜索结果。 查看全部搜索结果