Robust compressive sensing of sparse signals: a review
EURASIP Journal on Advances in Signal Processing, 2016•Springer
Compressive sensing generally relies on the ℓ 2 norm for data fidelity, whereas in many
applications, robust estimators are needed. Among the scenarios in which robust
performance is required, applications where the sampling process is performed in the
presence of impulsive noise, ie, measurements are corrupted by outliers, are of particular
importance. This article overviews robust nonlinear reconstruction strategies for sparse
signals based on replacing the commonly used ℓ 2 norm by M-estimators as data fidelity …
applications, robust estimators are needed. Among the scenarios in which robust
performance is required, applications where the sampling process is performed in the
presence of impulsive noise, ie, measurements are corrupted by outliers, are of particular
importance. This article overviews robust nonlinear reconstruction strategies for sparse
signals based on replacing the commonly used ℓ 2 norm by M-estimators as data fidelity …
Abstract
Compressive sensing generally relies on the ℓ 2 norm for data fidelity, whereas in many applications, robust estimators are needed. Among the scenarios in which robust performance is required, applications where the sampling process is performed in the presence of impulsive noise, i.e., measurements are corrupted by outliers, are of particular importance. This article overviews robust nonlinear reconstruction strategies for sparse signals based on replacing the commonly used ℓ 2 norm by M-estimators as data fidelity functions. The derived methods outperform existing compressed sensing techniques in impulsive environments, while achieving good performance in light-tailed environments, thus offering a robust framework for CS.
Springer
以上显示的是最相近的搜索结果。 查看全部搜索结果