Robust dynamic multi-objective vehicle routing optimization method

YN Guo, J Cheng, S Luo, D Gong… - IEEE/ACM transactions …, 2017 - ieeexplore.ieee.org
YN Guo, J Cheng, S Luo, D Gong, Y Xue
IEEE/ACM transactions on computational biology and bioinformatics, 2017ieeexplore.ieee.org
For dynamic multi-objective vehicle routing problems, the waiting time of vehicle, the number
of serving vehicles, and the total distance of routes were normally considered as the
optimization objectives. Except for the above objectives, fuel consumption that leads to the
environmental pollution and energy consumption was focused on in this paper. Considering
the vehicles' load and the driving distance, a corresponding carbon emission model was
built and set as an optimization objective. Dynamic multi-objective vehicle routing problems …
For dynamic multi-objective vehicle routing problems, the waiting time of vehicle, the number of serving vehicles, and the total distance of routes were normally considered as the optimization objectives. Except for the above objectives, fuel consumption that leads to the environmental pollution and energy consumption was focused on in this paper. Considering the vehicles' load and the driving distance, a corresponding carbon emission model was built and set as an optimization objective. Dynamic multi-objective vehicle routing problems with hard time windows and randomly appeared dynamic customers, subsequently, were modeled. In existing planning methods, when the new service demand came up, global vehicle routing optimization method was triggered to find the optimal routes for non-served customers, which was time-consuming. Therefore, a robust dynamic multi-objective vehicle routing method with two-phase is proposed . Three highlights of the novel method are: (i) After finding optimal robust virtual routes for all customers by adopting multi-objective particle swarm optimization in the first phase, static vehicle routes for static customers are formed by removing all dynamic customers from robust virtual routes in next phase. (ii) The dynamically appeared customers append to be served according to their service time and the vehicles' statues. Global vehicle routing optimization is triggered only when no suitable locations can be found for dynamic customers. (iii) A metric measuring the algorithms robustness is given. The statistical results indicated that the routes obtained by the proposed method have better stability and robustness, but may be sub-optimum. Moreover, time-consuming global vehicle routing optimization is avoided as dynamic customers appear.
ieeexplore.ieee.org
以上显示的是最相近的搜索结果。 查看全部搜索结果