Scale-dependent mechanical properties of native and decellularized liver tissue

DW Evans, EC Moran, PM Baptista, S Soker… - … and modeling in …, 2013 - Springer
DW Evans, EC Moran, PM Baptista, S Soker, JL Sparks
Biomechanics and modeling in mechanobiology, 2013Springer
Decellularization, a technique used in liver regenerative medicine, is the removal of all the
cellular components from a tissue or organ, leaving behind an intact structure of extracellular
matrix. The biomechanical properties of this novel scaffold material are currently unknown
and are important due to the mechanosensitivity of liver cells. Characterizing this material is
important for bioengineering liver tissue from this decellularized scaffold as well as creating
new 3-dimensional mimetic structures of liver extracellular matrix. This study set out to …
Abstract
Decellularization, a technique used in liver regenerative medicine, is the removal of all the cellular components from a tissue or organ, leaving behind an intact structure of extracellular matrix. The biomechanical properties of this novel scaffold material are currently unknown and are important due to the mechanosensitivity of liver cells. Characterizing this material is important for bioengineering liver tissue from this decellularized scaffold as well as creating new 3-dimensional mimetic structures of liver extracellular matrix. This study set out to characterize the biomechanical properties of perfused liver tissue in its native and decellularized states on both a macro- and nano-scale. Poroviscoelastic finite element models were then used to extract the fluid and solid mechanical properties from the experimental data. Tissue-level spherical indentation-relaxation tests were performed on 5 native livers and 8 decellularized livers at two indentation rates and at multiple perfusion rates. Cellular-level spherical nanoindentation was performed on 2 native livers and 1 decellularized liver. Tissue-level results found native liver tissue to possess a long-term Young’s modulus of 10.5 kPa and decellularized tissue a modulus of 1.18 kPa. Cellular-level testing found native tissue to have a long-term Young’s modulus of 4.40 kPa and decellularized tissue to have a modulus of 0.91 kPa. These results are important for regenerative medicine and tissue engineering where cellular response is dependent on the mechanical properties of the engineered scaffold.
Springer
以上显示的是最相近的搜索结果。 查看全部搜索结果