Spatial semiparametric models improve estimates of species abundance and distribution
Canadian Journal of Fisheries and Aquatic Sciences, 2014•cdnsciencepub.com
Accurate estimates of abundance are imperative for successful conservation and
management. Classical, stratified abundance estimators provide unbiased estimates of
abundance, but such estimators may be imprecise and impede assessment of population
status and trend when the distribution of individuals is highly variable in space. Model-based
procedures that account for important environmental covariates can improve overall
precision, but frequently there is uncertainty about the contribution of particular …
management. Classical, stratified abundance estimators provide unbiased estimates of
abundance, but such estimators may be imprecise and impede assessment of population
status and trend when the distribution of individuals is highly variable in space. Model-based
procedures that account for important environmental covariates can improve overall
precision, but frequently there is uncertainty about the contribution of particular …
Accurate estimates of abundance are imperative for successful conservation and management. Classical, stratified abundance estimators provide unbiased estimates of abundance, but such estimators may be imprecise and impede assessment of population status and trend when the distribution of individuals is highly variable in space. Model-based procedures that account for important environmental covariates can improve overall precision, but frequently there is uncertainty about the contribution of particular environmental variables and a lack of information about variables that are important determinants of abundance. We develop a general semiparametric mixture model that incorporates measured habitat variables and a nonparametric smoothing term to account for unmeasured variables. We contrast this spatial habitat approach with two stratified abundance estimators and compare the three models using an intensively managed marine fish, darkblotched rockfish (Sebastes crameri). We show that the spatial habitat model yields more precise, biologically reasonable, and interpretable estimates of abundance than the classical methods. Our results suggest that while design-based estimators are unbiased, they may exaggerate temporal variability of populations and strongly influence inference about population trend. Furthermore, when such estimates are used in broader meta-analyses, such imprecision may affect the broader biological inference (e.g., the causes and consequences of the variability of populations).
Canadian Science Publishing
以上显示的是最相近的搜索结果。 查看全部搜索结果