Superconductivity of the hydrogen-rich metal hydride under high pressure
D Meng, M Sakata, K Shimizu, Y Iijima, H Saitoh… - Physical Review B, 2019 - APS
Physical Review B, 2019•APS
Ternary metal hydrides are convenient and valuable systems for investigating the
metallization and superconductivity of metal hydrides because they can be synthesized
under mild conditions and recovered under ambient pressure. In this study, the conducting
behavior and structural phase transition of a hydrogen-rich metal hydride, L i 5 Mo H 11,
were investigated at pressures up to 210 GPa in a diamond anvil cell. The results showed
that L i 5 Mo H 11 transforms from an insulator to a poor metal at around 100 GPa …
metallization and superconductivity of metal hydrides because they can be synthesized
under mild conditions and recovered under ambient pressure. In this study, the conducting
behavior and structural phase transition of a hydrogen-rich metal hydride, L i 5 Mo H 11,
were investigated at pressures up to 210 GPa in a diamond anvil cell. The results showed
that L i 5 Mo H 11 transforms from an insulator to a poor metal at around 100 GPa …
Ternary metal hydrides are convenient and valuable systems for investigating the metallization and superconductivity of metal hydrides because they can be synthesized under mild conditions and recovered under ambient pressure. In this study, the conducting behavior and structural phase transition of a hydrogen-rich metal hydride, , were investigated at pressures up to 210 GPa in a diamond anvil cell. The results showed that transforms from an insulator to a poor metal at around 100 GPa. Superconductivity was observed at 100 GPa and retained until 210 GPa, and its maximum onset transition temperature was 6.5 K at 160 GPa. High-pressure synchrotron x-ray diffraction experiments revealed that the ambient-pressure hexagonal crystal structure is retained until at least 130 GPa. Furthermore, apart from the influence of pressure on the conducting behavior of , the effect of annealing time on the conducting and superconducting behaviors at room temperature and high pressure were also observed. We hypothesized that this time-dependent behavior is due to the restoration of the cage structure after distortion or rotation caused by pressurization. These findings provide insight on the conducting and superconducting behaviors of ternary metal hydrides that, until recently, have been mostly studied by theoretical methods.
American Physical Society
以上显示的是最相近的搜索结果。 查看全部搜索结果