Tactical modification of pseudo-SILAR process for enhanced quantum-dot deposition on TiO2 and ZnO nanoparticles for solar energy applications
Materials Research Bulletin, 2019•Elsevier
Pseudo successive ionic layer adsorption and reaction (p-SILAR) process is a unique route
to develop quantum-dot (QD) sensitized nanocomposites (NCs) via QDs deposition on metal
oxide nanoparticles (NPs). In this work, we have successfully increased the deposition of
PbS and CdS QDs on TiO 2 as well as ZnO NPs using a simple wet chemical modification of
p-SILAR. An optimal fluorination treatment of both NPs with 0.1 M aqueous solution of NH 4
F was carried out under centrifugation. Consequent increase in deposition of PbS and CdS …
to develop quantum-dot (QD) sensitized nanocomposites (NCs) via QDs deposition on metal
oxide nanoparticles (NPs). In this work, we have successfully increased the deposition of
PbS and CdS QDs on TiO 2 as well as ZnO NPs using a simple wet chemical modification of
p-SILAR. An optimal fluorination treatment of both NPs with 0.1 M aqueous solution of NH 4
F was carried out under centrifugation. Consequent increase in deposition of PbS and CdS …
Abstract
Pseudo successive ionic layer adsorption and reaction (p-SILAR) process is a unique route to develop quantum-dot (QD) sensitized nanocomposites (NCs) via QDs deposition on metal oxide nanoparticles (NPs). In this work, we have successfully increased the deposition of PbS and CdS QDs on TiO2 as well as ZnO NPs using a simple wet chemical modification of p-SILAR. An optimal fluorination treatment of both NPs with 0.1 M aqueous solution of NH4F was carried out under centrifugation. Consequent increase in deposition of PbS and CdS QDs was affirmed using scanning electron microscopy, EDX, UV–vis spectroscopy and XRD. Eventually, solar paint based photovoltaics and photocatalysis were carried out to show that modification of p-SILAR enabled TiO2-PbS NC to exhibit ˜30% increase (from 6.5 mA/cm2 to 8.5 mA/cm2) in the photocurrent density (JSC) of solar cells and more than 11% increase (from 81% to 92%) in the degradation of congo red (CR) dye.
Elsevier
以上显示的是最相近的搜索结果。 查看全部搜索结果