[HTML][HTML] The oxidative refolding of hen lysozyme and its catalysis by protein disulfide isomerase
B van den Berg, EW Chung, CV Robinson… - The EMBO …, 1999 - embopress.org
The EMBO Journal, 1999•embopress.org
The oxidative refolding of hen lysozyme has been studied by a variety of time‐resolved
biophysical methods in conjunction with analysis of folding intermediates using reverse‐
phase HPLC. In order to achieve this, refolding conditions were designed to reduce
aggregation during the early stages of the folding reaction. A complex ensemble of relatively
unstructured intermediates with on average two disulfide bonds is formed rapidly from the
fully reduced protein after initiation of folding. Following structural collapse, the majority of …
biophysical methods in conjunction with analysis of folding intermediates using reverse‐
phase HPLC. In order to achieve this, refolding conditions were designed to reduce
aggregation during the early stages of the folding reaction. A complex ensemble of relatively
unstructured intermediates with on average two disulfide bonds is formed rapidly from the
fully reduced protein after initiation of folding. Following structural collapse, the majority of …
Abstract
The oxidative refolding of hen lysozyme has been studied by a variety of time‐resolved biophysical methods in conjunction with analysis of folding intermediates using reverse‐phase HPLC. In order to achieve this, refolding conditions were designed to reduce aggregation during the early stages of the folding reaction. A complex ensemble of relatively unstructured intermediates with on average two disulfide bonds is formed rapidly from the fully reduced protein after initiation of folding. Following structural collapse, the majority of molecules slowly form the four‐disulfide‐containing fully native protein via rearrangement of a highly native‐like, kinetically trapped intermediate, des‐[76–94], although a significant population (∼ 30%) appears to fold more quickly via other three‐disulfide intermediates. The folding catalyst PDI increases dramatically both yields and rates of lysozyme refolding, largely by facilitating the conversion of des‐[76–94] to the native state. This suggests that acceleration of the folding rate may be an important factor in avoiding aggregation in the intracellular environment.
embopress.org
以上显示的是最相近的搜索结果。 查看全部搜索结果