The unique dopamine/ecdysteroid receptor modulates ethanol-induced sedation in Drosophila

E Petruccelli, Q Li, Y Rao, T Kitamoto - Journal of Neuroscience, 2016 - Soc Neuroscience
E Petruccelli, Q Li, Y Rao, T Kitamoto
Journal of Neuroscience, 2016Soc Neuroscience
Steroids profoundly influence behavioral responses to alcohol by activating canonical
nuclear hormone receptors and exerting allosteric effects on ion channels. Accumulating
evidence has demonstrated that steroids can also trigger biological effects by directly
binding G-protein-coupled receptors (GPCRs), yet physiological roles of such
unconventional steroid signaling in controlling alcohol-induced behaviors remain unclear.
The dopamine/ecdysteroid receptor (DopEcR) is a GPCR that mediates nongenomic actions …
Steroids profoundly influence behavioral responses to alcohol by activating canonical nuclear hormone receptors and exerting allosteric effects on ion channels. Accumulating evidence has demonstrated that steroids can also trigger biological effects by directly binding G-protein-coupled receptors (GPCRs), yet physiological roles of such unconventional steroid signaling in controlling alcohol-induced behaviors remain unclear. The dopamine/ecdysteroid receptor (DopEcR) is a GPCR that mediates nongenomic actions of ecdysteroids, the major steroid hormones in insects. Here, we report that Drosophila DopEcR plays a critical role in ethanol-induced sedation. DopEcR mutants took longer than control flies to become sedated during exposure to ethanol, despite having normal ethanol absorption or metabolism. RNAi-mediated knockdown of DopEcR expression revealed that this receptor is necessary after eclosion, and is required in particular neuronal subsets, including cholinergic and peptidergic neurons, to mediate this behavior. Additionally, flies ubiquitously overexpressing DopEcR cDNA had a tendency to become sedated quickly upon ethanol exposure. These results indicate that neuronal subset-specific expression of DopEcR in adults is required for normal sedation upon exposure to ethanol. We also obtained evidence indicating that DopEcR may promote ethanol sedation by suppressing epidermal growth factor receptor/extracellular signal-regulated kinase signaling. Last, genetic and pharmacological analyses suggested that in adult flies ecdysone may serve as an inverse agonist of DopEcR and suppress the sedation-promoting activity of DopEcR in the context of ethanol exposure. Our findings provide the first evidence for the involvement of nongenomic G-protein-coupled steroid receptors in the response to alcohol, and shed new light on the potential roles of steroids in alcohol-use disorders.
SIGNIFICANCE STATEMENT Alcohol abuse is an alarming personal and societal burden. The improvement of prevention and treatment strategies for alcohol-use disorders requires a better understanding of their biological basis. Steroid hormones profoundly affect alcohol-induced behaviors, but the contribution of their unconventional, nongenomic actions during these responses has not yet been elucidated. We found that Drosophila DopEcR, a unique G-protein-coupled receptor (GPCR) with dual specificity for dopamine and steroids, mediates noncanonical steroid actions to promote ethanol-induced sedation. Because steroid signaling and the behavioral response to alcohol are evolutionarily well conserved, our findings suggest that analogous mammalian receptors likely play important roles in alcohol-use disorders. Our work provides a foundation for further characterizing the function and mechanisms of action of nonclassical steroid GPCR signaling.
Soc Neuroscience
以上显示的是最相近的搜索结果。 查看全部搜索结果