Thick cloud removal in high-resolution satellite images using stepwise radiometric adjustment and residual correction
Cloud cover is a common problem in optical satellite imagery, which leads to missing
information in images as well as a reduction in the data usability. In this paper, a thick cloud
removal method based on stepwise radiometric adjustment and residual correction
(SRARC) is proposed, which is aimed at effectively removing the clouds in high-resolution
images for the generation of high-quality and spatially contiguous urban geographical maps.
The basic idea of SRARC is that the complementary information in adjacent temporal …
information in images as well as a reduction in the data usability. In this paper, a thick cloud
removal method based on stepwise radiometric adjustment and residual correction
(SRARC) is proposed, which is aimed at effectively removing the clouds in high-resolution
images for the generation of high-quality and spatially contiguous urban geographical maps.
The basic idea of SRARC is that the complementary information in adjacent temporal …
Cloud cover is a common problem in optical satellite imagery, which leads to missing information in images as well as a reduction in the data usability. In this paper, a thick cloud removal method based on stepwise radiometric adjustment and residual correction (SRARC) is proposed, which is aimed at effectively removing the clouds in high-resolution images for the generation of high-quality and spatially contiguous urban geographical maps. The basic idea of SRARC is that the complementary information in adjacent temporal satellite images can be utilized for the seamless recovery of cloud-contaminated areas in the target image after precise radiometric adjustment. To this end, the SRARC method first optimizes the given cloud mask of the target image based on superpixel segmentation, which is conducted to ensure that the labeled cloud boundaries go through homogeneous areas of the target image, to ensure a seamless reconstruction. Stepwise radiometric adjustment is then used to adjust the radiometric information of the complementary areas in the auxiliary image, step by step, and clouds in the target image can be removed by the replacement with the adjusted complementary areas. Finally, residual correction based on global optimization is used to further reduce the radiometric differences between the recovered areas and the cloud-free areas. The final cloud removal results are then generated. High-resolution images with different spatial resolutions and land-cover change patterns were used in both simulated and real-data cloud removal experiments. The results suggest that SRARC can achieve a better performance than the other compared methods, due to the superiority of the radiometric adjustment and spatial detail preservation. SRARC is thus a promising approach that has the potential for routine use, to support applications based on high-resolution satellite images.
MDPI
以上显示的是最相近的搜索结果。 查看全部搜索结果