Ultrafast stiffening of concentrated thermoresponsive mineral suspensions

SB Kandy, I Mehdipour, N Neithalath, A Kumar… - Materials & Design, 2022 - Elsevier
Materials & Design, 2022Elsevier
Extrusion-based 3D printing with rapidly hardening polymeric materials is capable of
building almost any conceivable structure. However, concrete, one of the most widely used
materials for large-scale structural components, is generally based on inorganic binder
materials like Portland cement. Unlike polymeric materials, a lack of precise control of the
extent and rate of solidification of cement-based suspensions is a major issue that affects the
ability to 3D-print geometrically complex structures. Here, we demonstrate a novel method …
Extrusion-based 3D printing with rapidly hardening polymeric materials is capable of building almost any conceivable structure. However, concrete, one of the most widely used materials for large-scale structural components, is generally based on inorganic binder materials like Portland cement. Unlike polymeric materials, a lack of precise control of the extent and rate of solidification of cement-based suspensions is a major issue that affects the ability to 3D-print geometrically complex structures. Here, we demonstrate a novel method for controllable-rapid solidification of concentrated mineral suspensions that contain a polymer binder system based on epoxy and thiol precursors as well as one or more mineral fillers like quartz and calcite. The thermally triggered epoxy-thiol condensation polymerization induces rapid stiffening of the hybrid suspensions (0.30≤ ϕ≤ 0.60), at trigger temperatures ranging between 50° C and 90° C achieving average stiffening rates up to 400 Pa/s. The use of nucleophilic initiators such as 1-methylimidazole provides control over the activation temperature and curing rate, thereby helping to achieve an adjustable induction period and excellent thermal latency. By using multiple techniques, we provide guidelines to create designer compositions of mineral suspensions that utilize thermal triggers to achieve thermal latency and ultrafast stiffening–prerequisite attributes for 3D-manufacturing of topologically-optimized structural components.
Elsevier
以上显示的是最相近的搜索结果。 查看全部搜索结果