[HTML][HTML] Validating a heat stress model: The effects of an electric heat blanket and nutritional plane on lactating dairy cows

M Al-Qaisi, EJ Mayorga, EA Horst, SK Kvidera… - Journal of dairy …, 2020 - Elsevier
M Al-Qaisi, EJ Mayorga, EA Horst, SK Kvidera, CS McCarthy, MA Abeyta, BM Goetz…
Journal of dairy science, 2020Elsevier
The efficacy of an electric heat blanket (EHB) has previously been confirmed as an
alternative method to evaluate heat stress (HS). However, a pair-feeding design has not
been used with the EHB model. Therefore, study objectives were to determine the
contribution of the nutritional plane to altered metabolism and productivity during EHB-
induced HS. Multiparous Holstein cows (n= 18; 140±10 d in milk) were subjected to 2
experimental periods (P); during P1 (4 d), cows were in thermoneutral conditions with ad …
Abstract
The efficacy of an electric heat blanket (EHB) has previously been confirmed as an alternative method to evaluate heat stress (HS). However, a pair-feeding design has not been used with the EHB model. Therefore, study objectives were to determine the contribution of the nutritional plane to altered metabolism and productivity during EHB-induced HS. Multiparous Holstein cows (n = 18; 140 ± 10 d in milk) were subjected to 2 experimental periods (P); during P1 (4 d), cows were in thermoneutral conditions with ad libitum feed intake. During P2 (4 d), cows were assigned to 1 of 2 treatments: (1) thermoneutral conditions and pair-fed (PF; n = 8) or (2) EHB-induced HS with ad libitum feed intake (n = 10). Overall, the EHB increased rectal temperature, vaginal temperature, skin temperature, and respiration rate (1.4°C, 1.3°C, 0.8°C, and 42 breaths/min, respectively) relative to PF cows. The EHB reduced dry matter intake (DMI; 47%) and, by design, PF cows had a similar pattern and extent of decreased DMI. Milk yield decreased in EHB and PF cows by 27.3% (12.1 kg) and 13.4% (5.4 kg), respectively, indicating that reduced DMI accounted for only ∼50% of decreased milk synthesis. Milk fat content tended to increase (19%) in the EHB group, whereas in the PF cows it remained similar relative to P1. During P2, milk protein and lactose contents tended to decrease or decreased (1.3 and 2.2%, respectively) in both EHB and PF groups. Milk urea nitrogen remained unchanged in PF controls but increased (34.2%) in EHB cows relative to P1. The EHB decreased blood partial pressure of CO2, total CO2, HCO3, and base excess levels (17, 16, 17, and 81%, respectively) compared with those in PF cows. During P2, the EHB and PF cows had similar decreases (4%) in plasma glucose content, but no differences in circulating insulin were detected. However, a group by day interaction was detected for plasma nonesterified fatty acids; levels progressively increased in PF controls but remained unaltered in the EHB cows. Blood urea nitrogen increased in the EHB cows (61%) compared with the PF controls. In summary, utilizing the EHB model indicated that reduced nutrient intake explains only about 50% of the decrease in milk yield during HS, and the postabsorptive changes in nutrient partitioning are similar to those obtained in climate-controlled chamber studies. Consequently, the EHB is a reasonable and economically feasible model to study environmental physiology of dairy cows.
Elsevier
以上显示的是最相近的搜索结果。 查看全部搜索结果