Video polyp segmentation: A deep learning perspective

GP Ji, G Xiao, YC Chou, DP Fan, K Zhao… - Machine Intelligence …, 2022 - Springer
Machine Intelligence Research, 2022Springer
We present the first comprehensive video polyp segmentation (VPS) study in the deep
learning era. Over the years, developments in VPS are not moving forward with ease due to
the lack of a large-scale dataset with fine-grained segmentation annotations. To address this
issue, we first introduce a high-quality frame-by-frame annotated VPS dataset, named SUN-
SEG, which contains 158 690 colonoscopy video frames from the well-known SUN-
database. We provide additional annotation covering diverse types, ie, attribute, object …
Abstract
We present the first comprehensive video polyp segmentation (VPS) study in the deep learning era. Over the years, developments in VPS are not moving forward with ease due to the lack of a large-scale dataset with fine-grained segmentation annotations. To address this issue, we first introduce a high-quality frame-by-frame annotated VPS dataset, named SUN-SEG, which contains 158 690 colonoscopy video frames from the well-known SUN-database. We provide additional annotation covering diverse types, i.e., attribute, object mask, boundary, scribble, and polygon. Second, we design a simple but efficient baseline, named PNS+, which consists of a global encoder, a local encoder, and normalized self-attention (NS) blocks. The global and local encoders receive an anchor frame and multiple successive frames to extract long-term and short-term spatial-temporal representations, which are then progressively refined by two NS blocks. Extensive experiments show that PNS+ achieves the best performance and real-time inference speed (170 fps), making it a promising solution for the VPS task. Third, we extensively evaluate 13 representative polyp/object segmentation models on our SUN-SEG dataset and provide attribute-based comparisons. Finally, we discuss several open issues and suggest possible research directions for the VPS community. Our project and dataset are publicly available at https://github.com/GewelsJI/VPS.
Springer
以上显示的是最相近的搜索结果。 查看全部搜索结果