A fractional dispersion model for overland solute transport

ZQ Deng, JLMP De Lima, MIP de Lima… - Water resources …, 2006 - Wiley Online Library
Water resources research, 2006Wiley Online Library
Using the kinematic‐wave overland flow equation and a fractional dispersion‐advection
equation, a process‐oriented, physically‐based model is developed for overland solute
transport. Two scenarios, one consisting of downslope and the other of upslope rainstorm
movements, are considered for numerical computations. Under these conditions, the
hydrograph displays a long‐tailed distribution due to the variation in flow velocity in both
time and distance. The solute transport exhibits a complex behavior. Pollutographs are …
Using the kinematic‐wave overland flow equation and a fractional dispersion‐advection equation, a process‐oriented, physically‐based model is developed for overland solute transport. Two scenarios, one consisting of downslope and the other of upslope rainstorm movements, are considered for numerical computations. Under these conditions, the hydrograph displays a long‐tailed distribution due to the variation in flow velocity in both time and distance. The solute transport exhibits a complex behavior. Pollutographs are characterized by a steep rising limb, with a peak, and a long, stretched receding limb; whereas the solute concentration distributions feature a rapid receding limb followed by a long stretched rising limb. Downslope moving storms cause much higher peak in both hydrographs and pollutographs than do upslope moving storms. Both hydrographs and the pollutographs predicted by the fractional dispersion model are in good agreement with the data measured experimentally using a soil flume and a moving rainfall simulator.
Wiley Online Library
以上显示的是最相近的搜索结果。 查看全部搜索结果